01
引言
在股票市场上,一切交易行为的成功皆为概率事件,交易获利的核心在于选择了上涨概率较高的股票。因此,利用高概率的上升形态来选股,是技术分析的重要方法之一。威廉·欧奈尔在《笑傲股市》中通过研究100多只超级牛股,总结出看涨形态中出现最为普遍的一种形态——杯柄形态。欧奈尔杯柄选股模型的买点,说白了是股价放量上升即将创出新高的时点。也就是说,最佳买点是在股价经过回调整理,股价即将创出新高且成交量放大50%以上。
欧奈尔“逢高买入”的逻辑主要基于三点,一是“逢高买入”可以规避股票长时间在底部盘整时的等待;二是在牛市初期和调整期,越早结束底部盘整创出新高的股票,未来的涨幅通常越大;三是在牛市初期和调整期,先买入更早结束盘整创出新高的股票,待其上涨获利部分卖出再建仓后启动的股票,可以提高资金使用效率。
本文基于欧奈尔“杯柄形态”和“逢高买入”的技术分析思想,使用Python基于个股价量形态进行简单的量化选股,以期对股票价格形态量化选股起到抛砖引玉的作用。实际上欧奈尔的选股精髓在于技术面和基本面的有机结合,并提出了CANSLIM七步选股法,感兴趣的可参见其原书《笑傲股市》。废话少说,下面直接给出Python价量选股代码。注意,文中提及股票仅作为分析案例,不构成任何投资建议!
02
Python选股代码
Python实现的步骤主要包括数据获取及清洗、价量突破规则设定、股票筛选和可视化分析。数据获取基于tushare开源框架,使用Python自带的Sqlit3轻量级数据库进行数据管理,参见推文《【手把手教你】Python面向对象编程入门及股票数据管理应用实例》。下面要引入的base、update_sql、plot_stock均是为方便数据管理写的个人脚本文件,在运行时可以注释掉使用自己的数据来替换和画图。加入知识星球获取可获取所有完整代码。
(数据管理的py文件和选股分析的ipynb文件)
#更新数据库信息
from update_sql import update_sql,info_sql
#画K线图
from plot_stock import stock_plot
更新数据库信息
update_sql()
输出结果:数据已经是最新的!
获取数据库信息info_sql()
输出结果:
数据库包含股票个数:3760
统计查询的总数:7873981
数据期间:20050104——20200113
文件大小为918M。
import pandas as pd
#base是个人写的脚本文件
from base import sql_engine,ts_pro
from datetime import datetime,timedelta
pro=ts_pro()
engine = sql_engine()
从数据库中获取复权价格和成交量
def get_price_vol_data():
now=datetime.now()
date=(now-timedelta(360)).strftime('%Y%m%d')
sql=f'select * from daily_data where trade_date>{date}'
all_data=pd.read_sql(sql,engine)
all_data=all_data.sort_values(['ts_code','trade_date'])
codes=list(all_data.ts_code.unique())
#前复权
all_data['adjclose']=all_data.groupby('ts_code').apply(lambda x:x.close*x.adj_factor/x.adj_factor.iloc[-1]).values
all_data['adjvol']=all_data.groupby('ts_code').apply(lambda x:x.vol*x.adj_factor/x.adj_factor.iloc[-1]).values
all_data['adjopen']=all_data.groupby('ts_code').apply(lambda x:x.open*x.adj_factor/x.adj_factor.iloc[-1]).values
all_data['adjhigh']=all_data.groupby('ts_code').apply(lambda x:x.high*x.adj_factor/x.adj_factor.iloc[-1]).values
all_data['adjlow']=all_data.groupby('ts_code').apply(lambda x:x.low*x.adj_factor/x.adj_factor.iloc[-1]).values
#设置索引
all_data=all_data.set_index(['trade_date','ts_code'])[['adjclose','adjvol','adjopen','adjhigh','adjlow']]
#转成面板数据
all_data=all_data.unstack()
return codes,all_data
筛选价格和成交量突破N日阈值的个股
def find_price_vol_stock(n,r=1.2):
codes,all_data=get_price_vol_data()
up_list=[]
for code in codes:
close=all_data['adjclose'][code]
open_=all_data['adjopen'][code]
high=all_data['adjhigh'][code]
low=all_data['adjlow'][code]
vol=all_data['adjvol'][code]
#剔除一字涨停
flag=True
if close.iloc[-1]==open_.iloc[-1]==high.iloc[-1]==low.iloc[-1]:
flag=False
break
#最近五日没有长上影线,以单日回撤3%为长上影线
for i in range(5):
if close[-5:][i]*1.03<high[-5:][i]:
flag=False
break
#价格突破前N日新高
p=close.iloc[-1] #当前价格
p0=close[-n:-1].min()
p1=close[-n:-1].max() #前n-1日最高价
#价格短期已上涨超过50%,涨幅过大不宜介入
'''
if (p-p0)/p0>r:
flag=False
break '''
#价格突破且放量上涨
if flag==True and \
p1<p<p1*r and \
vol[-5:].mean()/vol[-10:-5].mean()>2.0:
up_list.append(code)
return up_list
运行选股函数:
stocks_60=find_price_vol_stock(60)
print('突破60日量价的个股为:\n')
print(stocks_60)
print(f'突破60日量价个股个数为:{len(stocks_60)}')
突破60日量价的个股为:
['000417.SZ', '000885.SZ']
突破60日量价个股个数为:2
对选出的个股K线可视化
stock_plot(stocks_20[0]).kline_plot(ktype=0)
stock_plot(stocks_20[1]).kline_plot(ktype=0)
下面不考虑成交量,主要基于价格形态,寻找W底或圆底形态的个股。
#RPS是用于计算欧奈尔RPS相对强弱指标的脚本文件
from RPS import get_data
data=get_data()
#data.tail()
剔除了次新股和ST股后对剩下的2871只股票进行筛选。
def find_stock(data,n=20):
stock_list=[]
for c in data.columns:
d0=data[c][-n]
d1=data[c][-(n-2):-1].max()
d2=data[c][-1]
#考虑股价在3-20元个股情况
if 3<d2<20 and d1<d0<d2<d0*1.52:
stock_list.append(c)
#print(len(stock_list))
return stock_list
运行函数:
ss_20=find_stock(data)
print(ss_20)
#输出结果:
['恒华科技', '东方电缆', '立霸股份', '鼎信通讯', '普洛药业']
基于60天价格形态。ss_60=find_stock(data,n=60)
print(ss_60)
#输出结果:
['中航重机', '鲁阳节能', '金牛化工', '农尚环境', '北汽蓝谷']
价格形态的可视化,其中stock_plot是使用pyecharts0.5.11版本写的画图脚本文件,ktype=0为普通K线,=1为修正K线图。stock_plot(ss_20[0]).kline_plot(ktype=0)
stock_plot(ss_20[1]).kline_plot(ktype=0)
stock_plot(ss_60[0]).kline_plot(ktype=0)
stock_plot(ss_60[1]).kline_plot(ktype=0)
stock_plot(ss_60[2]).kline_plot(ktype=0)
03
结语
随着股票数量的增多,借助技术手段进行量化选股已越来越普遍,不少平台也用上了AI的手段。市场讯息万变,往往体现在量价关系的变化中。因此采用技术分析的量价时空分析,可以提高选股的成功概率。但所有技术分析都基于对历史的归纳,而历史并不总是全然相似,所处的市场环境和公司情况也不尽相同,未来的发展走势也可能不一样。技术分析本身是存在一定局限性的,凭借高概率的价格形态选股能够判定一只股票未来上涨,但也未必如你所愿的方式上涨,可能中间的震荡又将你洗出局。本文以Python为工具,对A股3700多只股票进行价量分析,利用价量突破进行选股,为股票技术分析的量化提供了一种简单的视角,具有一定的实战意义。具体应用中还可结合市场横截面的强弱指标——欧奈尔的RPS和基本面业绩指标进一步优化。以上分析仅供参考,不构成任何投资建议!
大家好,我是老表
觉得本文不错的话,转发、留言、点赞,是对我最大的支持。
每日留言
说说你读完本文感受?
或者一句激励自己的话?
(字数不少于15字)
想进学习交流群
加微信:jjxksa888
备注:简说Python
2小时快速掌握Python基础知识要点。
完整Python基础知识要点
近期推荐阅读:
【1】整理了我开始分享学习笔记到现在超过250篇优质文章,涵盖数据分析、爬虫、机器学习等方面,别再说不知道该从哪开始,实战哪里找了
【2】【终篇】Pandas中文官方文档:基础用法6(含1-5)
觉得不错就点一下“在看”吧