如题,本题题意很简单,如1 = 1;
2 = 1+1, 2 = 2;
......
但是问题的规模很大,所以本题不能仅仅依靠深搜这种朴素的思路。
当然,作为深搜在小规模的模板题,这里给出了深搜的模板做法,尽管不能AC:
错误思路(一)
#include<iostream>
typedef long long int ll;
using namespace std;
ll ans = 0;
int pow[30];
int dfs(int cur,int all,int sum){//cur:当前是2的几次方,all:目前的总和,sum:要达到的和
if(all == sum){
ans++;
return 1;
}
if(all > sum) return 0;
for(int j = cur;j <= 20;j++){
if(dfs(j,all+pow[j],sum) == 0) continue;//剪枝,如果2的当前次方无法得到最终结果,那么2的当前次方+1更无法达到……以此类推
}
return 1;
}
int main(){
int t = 2;
pow[0] = 1;
for(int i = 1;i <= 20;i++){
pow[i] = t;
t *= 2;
}
for(int i = 1;i <= 100;i++){
ans = 0;
dfs(0,0,i);
printf("%lld\n",ans);
}
}
下面的做法考虑“类”背包方法:
众所周知,完全背包是指在背包容量有限,每一种物品有无数多种,每一种物品都有一种价值的情况下,求不超过背包容量的最大价值。
本题也可以用这种思路,也就是1 2 4 8作为每一个商品,内层循环是对每一个数(相当于背包容量)进行遍历:如4能由3背包+1达到,所以形成4的过程包括形成3的全过程,只不过每次都要再加1.
4还能由2背包+2达到,所以形成4的过程也包括了形成2的全过程.
4还能由0背包+4达到,所以形成4的过程也包括了“形成0”的全过程。0背包默认为1.
而且我们发现,本题形成7的样例,每个数都是有序不减,如1+1+1+1+1+1+1,1+1+1+1+1+2......,而这种“类背包”,每次从商品的价值的角度出发,从1 2 4 8......的角度去对每个容量分析,保证了对每个商品,得到的dp是以2或4或8作为最大价值商品的背包;确保了“商品价值”不断增加,所以与题目要求的拆分完全等价,不会发生重复。
AC代码:
#include<iostream>
#include<stdio.h>
using namespace std;
typedef long long ll;
ll dp[1000005] = {0};
typedef long long ll;
const ll mod = 1000000007;
int main(){
int n;
cin >> n;
dp[0] = 1;
for(int j = 0;j <= 25;j++)
{
for(int i = 1;i <= 1000000;i++){
if(i < (1<<j)) continue;
dp[i] = (dp[i] + dp[i-(1<<j)])%mod;
}
}
printf("%lld\n",dp[n]);
}
737

被折叠的 条评论
为什么被折叠?



