吃瓜教程第6章

目录

间隔与支持向量

感知机和支持向量机的异同

超平面的数学表示

间隔

最大间隔的获取

对偶问题

概述

原问题的对偶问题

KKT条件

SMO算法求解二次规划问题

核函数

低维问题——>高维问题

​编辑​编辑核函数

软间隔与正则化

软间隔下的优化 

​编辑正则化问题

支持向量回归


教材:周志华——机器学习(西瓜书)

间隔与支持向量

感知机和支持向量机的异同

同:都是利用超平面进行划分

异:

  • 感知机只要求划分出即可,解不唯一
  • 支持向量机要求找出正负样本都距离最远的超平面,解唯一 ——>不偏向负也不偏向正样本,泛化性能好

超平面的数学表示

超平面将空间划分为两个部分,其中法向量指向的方向为正空间,正空间内的点代入方程计算\textbf{w}^T\textbf{x}+b>0; 负空间内的点代入方程计算\textbf{w}^T\textbf{x}+b<0

间隔

样本点到超平面的距离计算公式

推导过程

注意:\textbf{w}^T\textbf{x}_0为一个常数

数据集\textbf{X}关于超平面的几何间隔

利用超平面进行分类

根据此公式,我们不难看出

如果全部分类正确,则对于每一个样本点,它的分子为:

 y_i=1并且\textbf{w}^T\textbf{x}+b>0    或者   y_i=-1并且\textbf{w}^T\textbf{x}+b<0,则\gamma_i >0

如果出现了分类错误的情况,则一定存在某个样本点\gamma_i<0,由于\gamma = min\ \gamma_i,则\gamma<0

即下面这段话说的意思

注:中央指支持向量机所求的唯一超平面,通过max \ \gamma 获取

最大间隔的获取

关键点:最大化问题——>最小化问题(凸优化问题)

假设样本集的分布如图所示

解释:max\ \frac{1}{\left \| w \right \| } = min \left \| w \right \|,为了方便计算,变成2范数

对偶问题

概述

关于对偶问题的知识,我个人看到一篇讲的特别好的博客(比较长但易懂且透彻),把链接贴在这里【数学】拉格朗日对偶,从0到完全理解-CSDN博客

简单来说,设原始问题(一般凸优化中的问题都转换成最小值问题求解)的最优解为p^*

  • 若原始条件为弱对偶性时,对偶问题求出来的最优解d^*<p^*,对偶问题求出来的最优解是原始问题最优解的下确界
  • 若原始条件为强对偶性时,对偶问题求出来的最优解d^*=p^*,则我们可以通过解对偶问题获得和原始问题一样的解(一般对偶问题比原始问题好求)
  • 强对偶性满足的条件称为KKT条件

接下来我们针对问题进行具体论述:

原问题的对偶问题

步骤:求拉格朗日函数——>对各变量求偏导得到闭式解——>代回原函数得到对偶问题

KKT条件

一般情况

本例情况

从此条件中我们可以看出,对于样本集中的所有数据点,要么\alpha_i = 0,要么y_if(x_i)=1

  • \alpha_i = 0的点,不会计入f(x)的求和式中,对f(x)无影响
  • y_if(x_i)=1的点,位于最大间隔边界上,为支持向量

关键:最终模型与大部分样本无关,只与支持向量有关

SMO算法求解二次规划问题

基本思路:选定某一个/几个参数,用其他参数导出选定参数的极值。通过不断选定不同的参数最终收敛

具体操作:

如何选取变量:

已知:\alpha_i 和 \alpha_j只要有一个不满足KKT条件,目标函数在迭代后就会减小;且违背KKT条件的程度越大,更新后目标函数的减幅可能越大

第一个变量:选择违背KKT程度最大的变量

第二个变量:选使目标函数减幅最大的变量

====》问题:比较所有变量的目标函数减幅很复杂=====》启发式算法:选择间隔最大的变量(认为更新后会对目标函数造成较大影响)

作用效果:

双变量问题变成单变量问题,可求闭式解=====》问题简化

如何确定偏移项b:

核函数

低维问题——>高维问题

关键点:某问题在低维空间线性不可分,映射到高维空间后线性可分

已知:若问题为有限维(属性数有限),则一定可以投射到某个高维空间使问题变成线性可分的

以下步骤只是把\textbf{x}变成\phi\textbf{(x)},步骤完全一致

问题:高维空间中\phi(\textbf{x}_i)^T\phi(\textbf{x}_j)中不好求解=====》通过核函数解决

核函数

核函数的获取和定义先在此忽略

核函数不确定=====》支持向量机的最大变数/可调整参数

核函数的组合方式

软间隔与正则化

硬间隔:所有样本都必须满足条件

软间隔:允许某些样本不满足条件,但需要付出“代价”

软间隔下的优化 

 C控制样本不满足约束的严格程度

但上面那个\iota_{0/1}的性质不好,非连续非凸,所以:

最终结果只是在约束上有一点差别

正则化问题

简单来说是模型性质与拟合程度的折中(过于追求模型性质可能导致过拟合,过于追求拟合可能导致模型的性质不是我们想要的)

支持向量回归

 

对偶问题

最终结果(KKT条件及详细描述略)

参考视频: 

第6章-支持向量机_哔哩哔哩_bilibili​​​​​​​

第6章-软间隔与支持向量回归_哔哩哔哩_bilibili

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值