人工智能之数据分析 Pandas:第二章 Series

人工智能之数据分析 Pandas

第二章 Series



前言

Pandas 的 Series 是其最基础、最核心的一维数据结构,是学习 Pandas 的起点。本文从定义、特点、创建方式、常用操作、注意事项等方面进行系统而详细的介绍。


一、什么是 Series?

Series 是一个带标签索引的一维数组,由两部分组成:

  • values(值):实际存储的数据,底层为 NumPy 数组(ndarray),支持整数、浮点、字符串、布尔值等任意类型,也可包含缺失值 NaN
  • index(索引):与每个值一一对应的标签,默认为从 0 开始的整数,但可自定义为字符串、日期等可哈希类型。

✅ 简单理解:Series = 字典 + 数组

  • 像字典一样可通过“键”(索引)快速访问值;
  • 像数组一样支持向量化运算和高效数值计算。

二、Series 的核心特点

特性说明
一维结构只有一列数据
自动对齐运算时按索引对齐,不匹配的位置返回 NaN
支持缺失值使用 NaN 表示缺失数据
可命名可通过 name 参数设置名称(常用于转为 DataFrame 的列名)
索引可重复允许重复索引(但会影响唯一访问)
不可变大小(默认)创建后长度固定,但可通过 appenddrop 等生成新对象

三、创建 Series 的 4 种主要方式

1. 从列表或 NumPy 数组创建

import pandas as pd
import numpy as np

# 列表(默认整数索引)
s1 = pd.Series([10, 20, 30])
# 自定义索引
s2 = pd.Series([10, 20, 30], index=['a', 'b', 'c'], name='成绩')
# 从 NumPy 数组
arr = np.array([1.1, 2.2, 3.3])
s3 = pd.Series(arr, index=['x', 'y', 'z'])

2. 从字典创建(最常用之一)

data_dict = {'数学': 90, '语文': 85, '英语': 95}
s4 = pd.Series(data_dict)  # 字典的 key → index,value → data

# 若指定 index 中有字典未包含的键,则对应值为 NaN
s5 = pd.Series(data_dict, index=['数学', '物理'])  
# 输出:数学 90.0,物理 NaN(注意 dtype 变为 float64)

3. 用标量(单个值)创建

s6 = pd.Series(5, index=['A', 'B', 'C'])  
# 所有位置都填充为 5
# A    5
# B    5
# C    5

4. 创建空 Series

empty_s = pd.Series(dtype='float64')  # 必须指定 dtype

四、Series 的常用属性与方法

属性/方法说明示例
.index获取索引s.index
.values获取数据(NumPy 数组)s.values
.name获取或设置名称s.name = '分数'
.dtype数据类型s.dtype
.shape形状(如 (3,)s.shape
.size元素总数s.size
.isnull() / .notnull()判断是否为 NaNs.isnull()
.unique()返回唯一值s.unique()
.value_counts()统计各值出现次数s.value_counts()
.describe()描述性统计(均值、标准差等)s.describe()
.sort_values()按值排序s.sort_values()
.sort_index()按索引排序s.sort_index()
.astype('float64')类型转换s.astype('str')
.to_list()转为 Python 列表s.to_list()
.to_frame()转为 DataFrames.to_frame()

五、数据访问与操作

1. 访问元素

s = pd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])

s['a']        # 标签索引 → 1
s[0]          # 位置索引 → 1(不推荐,易混淆)
s.loc['a']    # 显式索引(推荐)
s.iloc[0]     # 隐式位置索引(推荐用于位置访问)

2. 切片

s['a':'c']      # 显式切片 → 包含 'c'(前闭后闭)
s.iloc[0:2]     # 隐式切片 → 不包含索引 2(前闭后开)

3. 修改与增删

s['b'] = 20     # 修改
s['e'] = 5      # 新增(自动扩展)
del s['a']      # 删除(原地修改)
s_new = s.drop('c')  # 返回新 Series,不修改原对象

4. 向量化运算与过滤

s * 2           # 所有元素 ×2
s[s > 3]        # 布尔索引:筛选值大于 3 的元素
np.sqrt(s)      # 应用 NumPy 函数

六、重要注意事项

  1. 索引对齐机制
    两个 Series 运算时,Pandas 会自动按索引对齐,非公共索引位置结果为 NaN

    s1 = pd.Series([1, 2], index=['a', 'b'])
    s2 = pd.Series([3, 4], index=['b', 'c'])
    print(s1 + s2)  
    # a    NaN
    # b    6.0
    # c    NaN
    
  2. NaN 的处理

    • NaN != NaN,不能用 == 判断,应使用 isnull()pd.isna()
    • NaN 的 Series,dtype 通常为 float64
  3. 索引可重复,但慎用
    重复索引会导致 s['key'] 返回多个值(Series 而非标量)

  4. 性能提示

    • 尽量避免频繁修改 Series(如循环中赋值),建议一次性构建
    • 使用 .loc / .iloc 提高代码可读性和安全性

七、总结

Series 是 Pandas 的基石

  • 它融合了数组的高效计算与字典的灵活索引;
  • 是构建 DataFrame 的基本单元(DataFrame 的每一列就是一个 Series);
  • 掌握 Series,就掌握了 Pandas 数据操作的核心逻辑。

后续

python过渡项目部分代码已经上传至gitee,后续会逐步更新。

资料

公众号:咚咚王
gitee:https://gitee.com/wy18585051844/ai_learning

《Python编程:从入门到实践》
《利用Python进行数据分析》
《算法导论中文第三版》
《概率论与数理统计(第四版) (盛骤) 》
《程序员的数学》
《线性代数应该这样学第3版》
《微积分和数学分析引论》
《(西瓜书)周志华-机器学习》
《TensorFlow机器学习实战指南》
《Sklearn与TensorFlow机器学习实用指南》
《模式识别(第四版)》
《深度学习 deep learning》伊恩·古德费洛著 花书
《Python深度学习第二版(中文版)【纯文本】 (登封大数据 (Francois Choliet)) (Z-Library)》
《深入浅出神经网络与深度学习+(迈克尔·尼尔森(Michael+Nielsen)》
《自然语言处理综论 第2版》
《Natural-Language-Processing-with-PyTorch》
《计算机视觉-算法与应用(中文版)》
《Learning OpenCV 4》
《AIGC:智能创作时代》杜雨+&+张孜铭
《AIGC原理与实践:零基础学大语言模型、扩散模型和多模态模型》
《从零构建大语言模型(中文版)》
《实战AI大模型》
《AI 3.0》

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咚咚王者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值