【题目描述】
设有N×N的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:

某人从图中的左上角A出发,可以向下行走,也可以向右行走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
【输入】
第一行为一个整数N(N≤10),表示N×N的方格图。
接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。一行“0 0 0”表示结束。
【输出】
第一个整数,表示两条路径上取得的最大的和。
【输入样例】
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
【输出样例】
67
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=15,INF=2e9;
int w[N][N],f[2*N][N][N];
int main(){
int n;cin>>n;
int a,b,c;
while(cin>>a>>b>>c,a||b||c)w[a][b]=c;
for(int k=2;k<=2*n;k++){
for(int i1=1;i1<=n;i1++)
for(int i2=1;i2<=n;i2++)
{
int j1=k-i1,j2=k-i2;
if(j1<1||j1>n||j2<1||j2>n)continue;
int t=w[i1][j1];
if(i1!=i2)t+=w[i2][j2];
f[k][i1][i2]=max(f[k][i1][i2],f[k-1][i1][i2]+t);
f[k][i1][i2]=max(f[k][i1][i2],f[k-1][i1-1][i2]+t);
f[k][i1][i2]=max(f[k][i1][i2],f[k-1][i1][i2-1]+t);
f[k][i1][i2]=max(f[k][i1][i2],f[k-1][i1-1][i2-1]+t);
}
}
cout<<f[2*n][n][n]<<'\n';
}
867

被折叠的 条评论
为什么被折叠?



