最近对问题-蛮力法、分治法

蛮力法:

int ClosestPoints(point p[], int n){
    int index1, index2; //记录下标
    int d, minDist = 1000; //设最大距离
    int i, j;
    for(i = 0; i < n - 1; i++ ){
        for(j = i+1; j < n; j++){
            d = (p[i].x - p[j].x)*(p[i].x - p[j].x) + (p[i].y - p[j].y) * (p[i].y - p[j].y);
            if( d < minDist){
                minDist = d;
                index1 = i;
                index2 = j;
            }
        }
    }
    printf("最近的点对是:第 %d 个点和第 %d 个点", index1 + 1, index2 + 1);

    return minDist;
}

分治法:

int ClosestPoints_1(point p[], int low, int high){
    int d1, d2, d3, d;
    point p1[N]; // 存放2d宽度内的点
    int mid, i, j, index;


    if(high - low == 1){ //两个点时

        return Distance(p[low], p[high]);
    }
    if(high - low  == 2) //三个点时
    {

        d1 = Distance(p[low], p[low + 1]);
        d2 = Distance(p[low + 1], p[high]);
        d3 = Distance(p[low], p[high]);

        if((d1 > d2) && (d3 > d2))
            return d2;
        else if((d1 > d3) && (d2 > d3))
            return d3;
        else
            return d1;
    }
    mid = (low + high) / 2;

    d1 = ClosestPoints_1(p, low, mid);
    d2 = ClosestPoints_1(p, mid + 1, high);

    if(d1 <= d2)
        d = d1;
    else
        d = d2;

    index = 0;


    for(i = mid; (i >= low) && (p[mid].x - p[i].x < d); i--){
        p1[index++] = p[i];
    }

    for(i = mid + 1; (i <= high) && (p[i].x - p[mid].x < d); i++){
        p1[index++] = p[i];
    }

    QuickSort_y(p1, 0, index-1);


    for(i = 0; i <index; i++){
        for(j = i+1;j < index; j++){
            if(p1[j].y - p1[i].y >= d)
                break;
            else
            {

                d3 = Distance(p1[i], p1[j]);

                if(d3 < d){
                    d = d3;


                }
            }
        }
    }


    return d;

}

排序(快速排序):

int Partition_x(point p[], int first
  • 3
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
最大子段和问题是指在一个数列中找到一个子序列,使得该子序列中所有元素的和最大。以下是三种常见的算实现: 1. 蛮力 蛮力是最朴素的解,它的时间复杂度为 $O(n^2)$。具体实现如下: ```c++ int maxSubArray(int nums[], int n) { int ans = INT_MIN; for (int i = 0; i < n; i++) { int sum = 0; for (int j = i; j < n; j++) { sum += nums[j]; ans = max(ans, sum); } } return ans; } ``` 2. 分治法 分治法的时间复杂度为 $O(n\log n)$,它将问题分成三个部分:求解左半部分的最大子段和、求解右半部分的最大子段和、求解跨越中点的最大子段和。具体实现如下: ```c++ int maxSubArray(int nums[], int left, int right) { if (left == right) return nums[left]; int mid = left + (right - left) / 2; int leftMax = maxSubArray(nums, left, mid); int rightMax = maxSubArray(nums, mid + 1, right); int crossMax = nums[mid]; int sum = nums[mid]; for (int i = mid - 1; i >= left; i--) { sum += nums[i]; crossMax = max(crossMax, sum); } sum = crossMax; for (int i = mid + 1; i <= right; i++) { sum += nums[i]; crossMax = max(crossMax, sum); } return max(leftMax, max(rightMax, crossMax)); } ``` 3. 动态规划 动态规划的时间复杂度为 $O(n)$,它定义了一个状态数组 $dp$,其中 $dp[i]$ 表示以 $i$ 结尾的最大子段和。具体实现如下: ```c++ int maxSubArray(int nums[], int n) { int dp[n]; dp[0] = nums[0]; int ans = nums[0]; for (int i = 1; i < n; i++) { dp[i] = max(dp[i - 1] + nums[i], nums[i]); ans = max(ans, dp[i]); } return ans; } ``` 以上是三种常见的算实现,需要注意的是,在实际应用中,我们还可以使用其他优化方,如前缀和、后缀和、单调栈等,以进一步提高算效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值