学习笔记(关于看数找规律)

本文是关于如何在无其他限定条件下,通过数列的有限项构建数列通项公式的学习笔记。文章介绍了不同的构建方法,包括利用y1到ym的表达式,以及在不同情况下的扩展公式,例如当a1*a2*...*am不等于0时的处理。还提到了函数g(n)和h(n)的引入,以增加公式灵活性。
摘要由CSDN通过智能技术生成

#学习笔记(关于看数找规律)
如何根据数列的有限项(无其他限定条件的情况下),构建数列的通项公式?

如:已知数列 a n a_n an的前m项(m<=n)为:

a 1 a_1 a1 a 2 a_2 a2 a 3 a_3 a3 a 4 a_4 a4,……, a m a_m am

a n a_n an=f(n)。

设:
y 1 y_1 y1 = ( n − 2 ) ( n − 3 ) … ( n − m ) ( 1 − 2 ) ( 1 − 3 ) … ( 1 − m ) \frac{(n-2)(n-3)\dots(n-m)}{(1-2)(1-3)\dots(1-m)} (12)(13)1m(n2)(n3)nm= ∏ m k = 2 n − k 1 − k \underset{k=2}{\overset{m}{\prod}}\frac{n-k}{1-k} k=2m1knk
y 2 y_2 y2 = ( n − 1 ) ( n − 3 ) … ( n − m ) ( 2 − 1 ) ( 2 − 3 ) … ( 2 − m ) \frac{(n-1)(n-3)\dots(n-m)}{(2-1)(2-3)\dots(2-m)} (21)(23)2m(n1)(n3)nm= ∏ m k = 1 , k ≠ 2 n − k 2 − k \underset{k=1,k\ne2}{\overset{m}{\prod}}\frac{n-k}{2-k} k=1,k=2m2knk
… \dots
y i y_i yi = ( n − 1 ) ( n − 2 ) … ( n − m ) ( i − 1 ) ( i − 2 ) … ( i − m ) \frac{(n-1)(n-2)\dots(n-m)}{(i-1)(i-2)\dots(i-m)} (i1)(i2)im(n1)(n2)nm= ∏ m k = 1 , k ≠ i n − k i − k \underset{k=1,k\ne i}{\overset{m}{\prod}}\frac{n-k}{i-k} k=1,k=i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值