PROTOTEX: Explaining Model Decisions with Prototype Tensors论文解读

这篇论文探讨了如何使用原型张量(Prototypetensor)模型提升文本分类任务的可解释性,介绍了模型结构、损失函数、训练过程及Negativeprototype的概念,旨在揭示文本理解的内在机制。
摘要由CSDN通过智能技术生成

提示:这里只放了汇报的Slides,详情可见知乎Durling


前言

这是一篇关于NLP可解释的论文。
在文本分类任务下进行,采用原型张量Prototype tensor进行可解释分析。


提示:以下是本篇文章正文内容,下面案例可供参考

一、论文动机与贡献

在这里插入图片描述

二、模型

1.原型张量

在这里插入图片描述

2.模型结构

在这里插入图片描述

3.损失函数

在这里插入图片描述

3.训练过程

在这里插入图片描述

4.Negative prototype

在这里插入图片描述


总结

在这里插入图片描述
关注知乎Durling,里面分享了更多知识。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值