一、每日牢骚话
又双叒叕咕咕咕了好久,因为周五晚上去看十佳歌手大赛了(为什么非要去啊!),周六回家了(为什么非要回家啊!),然后理所当然的睡了一天啥也没干(为什么非要睡啊!),周日去打新生赛了(为什么非要打啊!),打了五个小时,累死了,回宿舍啥也干不了只会阿巴阿巴。
没错!我上周的积分还没有积完呢,又要开始新的积分了......因此这几天都在补作业,然鹅,又有个新生风采大赛的答辩要收集资料写稿,作为混子学委的鼠鼠我被迫承担了学风建设。如果我不是完美主义者,我应该能做的快一些,但其实我是中度患者。
现在是11月16号,晚上,8点36,距离计导期末考试还有8天,这几天还要背ppt(我真不会这破玩意儿)。如果不是明天一上午的程序设计没事儿干,我才不会来这儿写博客呢。现在的精神状态真是越来越好了呢,当代大学生哪有不疯的哈哈哈哈哈哈哈。
没错已经过了一周了,我一半都没写,现在晚上要打cf(没错就是你认为的cf),好忙,这周还三节思政,三节程设,还有期末,寄。
没错又过了一周了,我还是没写完,寄。
好,这次写完了快来夸我!。11.12~11.30,小时候最能鸽的一集。
二、离散化
P1089 - 我的很长,你算一下 - ETOJ (eriktse.com)
如果你有一个很长很长的数组(1e9个数),但实际上只对其中n<1e5个数有操作,剩下的都是0,那该怎么办呢。用x轴表示一下很清晰,因此用X作数组名称。
数组开不了那么大,所以要压缩一下。将大的数组下标转化成小的数组下标,例如处理的是100,200,300,350,就转化为处理1,2,3,4这四个数字,实现一一匹配的操作需要用到二分查找优化。
想要转化,还需要离线操作一下,才能不混不乱。离线指先将输入数据存起来,预处理完之后再用输入数据。相对的在线就是直接进行操作。
#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 3e5 + 10;
vector<int> X;
ll a[N];
struct Q {
ll a, b;
} add[N], que[N];
int bin(ll x) {
//lower_bound找到第一个>=x的迭代器
return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}
int main() {
qio
int n, q; cin >> n >> q;
//离线
for (int i = 1; i <= n; i++) {
int x, w; cin >> x >> w;
X.push_back(x);
add[i] = {x, w};
}
for (int i = 1; i <= q; i++) {
int l, r; cin >> l >> r;
X.push_back(l), X.push_back(r);
que[i] = {l, r};
}
//去重排序
sort(X.begin(), X.end());
X.erase(unique(X.begin(), X.end()), X.end());
//修改
for (int i = 1; i <= n; i++) {
int x = bin(add[i].a);
ll w = add[i].b;
a[x] += w;
}
//前缀和,离散化了应该到X.size()
for (int i = 1; i <= X.size(); i++) a[i] += a[i - 1];
//查询
for (int i = 1; i <= q; i++) {
int l = bin(que[i].a);
int r = bin(que[i].b);
cout << a[r] - a[l - 1] << '\n';
}
}
三、树状数组
树状数组为数组t,不能用0当下标
可用于维护区间和,单点修改,区间查询
,区间修改
lowbit(x)为留下x的最后一个二进制1的值 eg.lowbit(1100100) = 100 lowbit(x) = x & -x

1.单点修改
P1070 - 【模板】树状数组(单点修改) - ETOJ (eriktse.com)
修改a的某个元素,t也会发生变化
eg. 给a3 + x ,会修改t [3] ,t [4] ,t [8] ……的值,下一个为 i + lowbit(i)
2.区间查询
在t数组中找到一些无缝衔接的区间:i - lowbit( i )
eg.查询a [1] 到a [7] 的和,只需找到连续的t [7],t [6],t [4]即可
#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 2e5 + 10;
ll a[N], t[N];
int n, q;
int lowbit(int x) {
return x & (-x);
}
void update(int k, int v) {
for (int i = k; i <= n; i += lowbit(i)) {
t[i] += v;
}
}
ll getsum(int x) {
ll res = 0;
for (int i = x; i >= 1; i -= lowbit(i)) {
res += t[i];
}
return res;
}
int main() {
qio
cin >> n >> q;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) {
update(i, a[i]);
}
while (q--) {
int op; cin >> op;
if (op == 1) {
int k, v; cin >> k >> v;
update(k, v);
} else {
int l, r; cin >> l >> r;
cout << getsum(r) - getsum(l - 1) << '\n';
}
}
}
3.区间修改
P1072 - 【模板】树状数组(区间修改) - ETOJ (eriktse.com)
树状数组维护差分,树状数组td[ N ],tdi[ N ]
r为查询范围

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 2e5 + 10;
ll a[N], td[N], tid[N];
int n, q;
int lowbit(int x) {
return x & (-x);
}
void update(ll k, ll x) {
for (int i = k; i <= n; i += lowbit(i)) td[i] += x, tid[i] += k * x;
}
ll getsum(int k) {
ll res = 0;
for (int i = k; i >= 1; i -= lowbit(i)) res += (k + 1) * td[i] - tid[i];
return res;
}
int main() {
qio
cin >> n >> q;
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) update(i, a[i]), update(i + 1, -a[i]);
while (q--) {
int op;
cin >> op;
if (op == 1) {
ll l, r, v; cin >> l >> r >> v;
update(l, v), update(r + 1, -v);
} else {
int l, r; cin >> l >> r;
cout << getsum(r) - getsum(l - 1) << '\n';
}
}
}
四、应用
1.P1017 - 求逆序对个数 - ETOJ (eriktse.com)
离散化+树状数组
主要为桶的思想,将a数组中的数放到桶中,用树状数组存放桶中数的个数,离散化缩小桶的范围,能开到这么大的数组。
计算时遍历数组a,得到一个数就将其离散化,并放到桶中,计算比这个数大的桶中数字的和,getsum(X.size()) - getsum(bin(a[i])),然后update树状数组(存放数的个数)+1
#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 2e5 + 10;
ll a[N], t[N];
vector<int> X;
int lowbit(int x) {
return x & (-x);
}
void update(int k, int x) {
//离散化后范围变成X.size()
for (int i = k; i <= X.size(); i += lowbit(i)) t[i] += x;
}
ll getsum(int k) {
ll res = 0;
for (int i = k; i >= 1; i -= lowbit(i)) res += t[i];
return res;
}
int bin(int x) {
return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}
int main() {
qio
int n; cin >> n;
for (int i = 1; i <= n; i++) {
cin >> a[i];
X.push_back(a[i]);
}
sort(X.begin(), X.end());
X.erase(unique(X.begin(), X.end()), X.end());
ll ans = 0;
for (int i = 1; i <= n; i++) {
ans += 1ll * getsum(X.size()) - getsum(bin(a[i]));
update(bin(a[i]), 1);
}
cout << ans << '\n';
}
2.Problem - 652D - Codeforces
线段包含
#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
typedef long long ll;
typedef double db;
void solve();
signed main() {
qio
int T = 1;
// cin >> T;
while (T--)solve();
}
const int N = 2e5 + 10;
ll t[N], ans[N];
struct segment {
int l, r, id;
bool operator < (const segment a) const {
return (this-> l) > a.l;
}
} s[N];
vector<int> X;
int lowbit(int x) {
return x & (-x);
}
void update(int k, int x) {
for (int i = k; i <= X.size(); i += lowbit(i)) {
t[i] += x;
}
}
ll getsum(int k) {
ll res = 0;
for (int i = k; i >= 1; i -= lowbit(i)) {
res += t[i];
}
return res;
}
int bin(int x) {
return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}
void solve() {
int n;
cin >> n;
for (int i = 1; i <= n; i++) {
cin >> s[i].l >> s[i].r;
s[i].id = i;
X.push_back(s[i].r);
}
sort(s + 1, s + 1 + n);
sort(X.begin(), X.end());
X.erase(unique(X.begin(), X.end()), X.end());
for (int i = 1; i <= n; i++) {
ans[s[i].id] = getsum(bin(s[i].r));
update(bin(s[i].r), 1);
}
for (int i = 1; i <= n; i++) {
cout << ans[i] << '\n';
}
}
3.P3605 [USACO17JAN] Promotion Counting P
#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
typedef long long ll;
typedef double db;
const int N = 2e5 + 10;
vector<int> g[N];
ll a[N], t[N], ans[N];
vector<int> X;
int n;
int bin(int x){
return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}
int lowbit(int x){
return x & (-x);
}
void update(int pos, int x){
for(int i = pos; i <= (int)X.size(); i += lowbit(i)) t[i] += x;
}
ll getsum(int pos){
ll res = 0;
for(int i = pos; i >= 1; i -= lowbit(i)){
res += t[i];
}
return res;
}
void dfs(int now){
//减去原来就比自己强的
ans[now] = -(getsum(X.size()) - getsum(bin(a[now])));
for(auto &nex : g[now]){
dfs(nex);
}
//update完子树中比自己强的,再加上比自己强的
ans[now] += getsum(X.size()) - getsum(bin(a[now]));
update(bin(a[now]), 1);
}
signed main() {
cin >> n;
for(int i = 1; i <= n; i++){
cin >> a[i];
X.push_back(a[i]);
}
for(int i = 2; i <= n; i++){
int x; cin >> x;
g[x].push_back(i);
}
sort(X.begin(), X.end());
X.erase(unique(X.begin(), X.end()), X.end());
dfs(1);
for(int i = 1; i <= n; i++){
cout << ans[i] << '\n';
}
}
1320

被折叠的 条评论
为什么被折叠?



