ET算法【树状数组与离散化】

一、每日牢骚话

       又双叒叕咕咕咕了好久,因为周五晚上去看十佳歌手大赛了(为什么非要去啊!),周六回家了(为什么非要回家啊!),然后理所当然的睡了一天啥也没干(为什么非要睡啊!),周日去打新生赛了(为什么非要打啊!),打了五个小时,累死了,回宿舍啥也干不了只会阿巴阿巴。

       没错!我上周的积分还没有积完呢,又要开始新的积分了......因此这几天都在补作业,然鹅,又有个新生风采大赛的答辩要收集资料写稿,作为混子学委的鼠鼠我被迫承担了学风建设。如果我不是完美主义者,我应该能做的快一些,但其实我是中度患者。

       现在是11月16号,晚上,8点36,距离计导期末考试还有8天,这几天还要背ppt(我真不会这破玩意儿)。如果不是明天一上午的程序设计没事儿干,我才不会来这儿写博客呢。现在的精神状态真是越来越好了呢,当代大学生哪有不疯的哈哈哈哈哈哈哈。


        没错已经过了一周了,我一半都没写,现在晚上要打cf(没错就是你认为的cf),好忙,这周还三节思政,三节程设,还有期末,寄。


        没错又过了一周了,我还是没写完,寄。

        好,这次写完了快来夸我!。11.12~11.30,小时候最能鸽的一集。

二、离散化

P1089 - 我的很长,你算一下 - ETOJ (eriktse.com)

如果你有一个很长很长的数组(1e9个数),但实际上只对其中n<1e5个数有操作,剩下的都是0,那该怎么办呢。用x轴表示一下很清晰,因此用X作数组名称。

数组开不了那么大,所以要压缩一下。将大的数组下标转化成小的数组下标,例如处理的是100,200,300,350,就转化为处理1,2,3,4这四个数字,实现一一匹配的操作需要用到二分查找优化。

想要转化,还需要离线操作一下,才能不混不乱。离线指先将输入数据存起来,预处理完之后再用输入数据。相对的在线就是直接进行操作。

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;
const int N = 3e5 + 10;

vector<int> X;
ll a[N];
struct Q {
	ll a, b;
} add[N], que[N];

int bin(ll x) {
	//lower_bound找到第一个>=x的迭代器
	return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}

int main() {
	qio
	int n, q; cin >> n >> q;
	//离线
	for (int i = 1; i <= n; i++) {
		int x, w; cin >> x >> w;
		X.push_back(x);
		add[i] = {x, w};
	}
	for (int i = 1; i <= q; i++) {
		int l, r; cin >> l >> r;
		X.push_back(l), X.push_back(r);
		que[i] = {l, r};
	}
	//去重排序
	sort(X.begin(), X.end());
	X.erase(unique(X.begin(), X.end()), X.end());
	//修改
	for (int i = 1; i <= n; i++) {
		int x = bin(add[i].a);
		ll w = add[i].b;
		a[x] += w;
	}
	//前缀和,离散化了应该到X.size()
	for (int i = 1; i <= X.size(); i++)	a[i] += a[i - 1];
	//查询
	for (int i = 1; i <= q; i++) {
		int l = bin(que[i].a);
		int r = bin(que[i].b);
		cout << a[r] - a[l - 1] << '\n';
	}
}

三、树状数组

树状数组为数组t,不能用0当下标

可用于维护区间和,单点修改O(1),区间查询O(logn),区间修改O(logn)

lowbit(x)为留下x的最后一个二进制1的值 eg.lowbit(1100100) = 100        lowbit(x) = x & -x

1.单点修改

P1070 - 【模板】树状数组(单点修改) - ETOJ (eriktse.com)

修改a的某个元素,t也会发生变化

eg. 给a3 + x ,会修改t [3] ,t [4] ,t [8] ……的值,下一个为 i + lowbit(i)

2.区间查询

在t数组中找到一些无缝衔接的区间:i - lowbit( i )

eg.查询a [1] 到a [7] 的和,只需找到连续的t [7],t [6],t [4]即可

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;

const int N = 2e5 + 10;
ll a[N], t[N];
int n, q;

int lowbit(int x) {
	return x & (-x);
}
void update(int k, int v) {
	for (int i = k; i <= n; i += lowbit(i)) {
		t[i] += v;
	}
}
ll getsum(int x) {
	ll res = 0;
	for (int i = x; i >= 1; i -= lowbit(i)) {
		res += t[i];
	}
	return res;
}

int main() {
	qio
	cin >> n >> q;
	for (int i = 1; i <= n; i++) cin >> a[i];
	for (int i = 1; i <= n; i++) {
		update(i, a[i]);
	}
	while (q--) {
		int op; cin >> op;
		if (op == 1) {
			int k, v; cin >> k >> v;
			update(k, v);
		} else {
			int l, r; cin >> l >> r;
			cout << getsum(r) - getsum(l - 1) << '\n';
		}
	}
}

3.区间修改

P1072 - 【模板】树状数组(区间修改) - ETOJ (eriktse.com)

树状数组维护差分,树状数组td[ N ],tdi[ N ]

r为查询范围

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;

const int N = 2e5 + 10;
ll a[N], td[N], tid[N];
int n, q;

int lowbit(int x) {
	return x & (-x);
}
void update(ll k, ll x) {
	for (int i = k; i <= n; i += lowbit(i)) td[i] += x, tid[i] += k * x;
}
ll getsum(int k) {
	ll res = 0;
	for (int i = k; i >= 1; i -= lowbit(i)) res += (k + 1) * td[i] - tid[i];
	return res;
}

int main() {
	qio
	cin >> n >> q;
	for (int i = 1; i <= n; i++) cin >> a[i];
	for (int i = 1; i <= n; i++) update(i, a[i]), update(i + 1, -a[i]);
	while (q--) {
		int op;
		cin >> op;
		if (op == 1) {
			ll l, r, v;	cin >> l >> r >> v;
			update(l, v), update(r + 1, -v);
		} else {
			int l, r; cin >> l >> r;
			cout << getsum(r) - getsum(l - 1) << '\n';
		}
	}
}

四、应用

1.P1017 - 求逆序对个数 - ETOJ (eriktse.com)

离散化+树状数组

主要为桶的思想,将a数组中的数放到桶中,用树状数组存放桶中数的个数,离散化缩小桶的范围,能开到这么大的数组。

计算时遍历数组a,得到一个数就将其离散化,并放到桶中,计算比这个数大的桶中数字的和,getsum(X.size()) - getsum(bin(a[i])),然后update树状数组(存放数的个数)+1

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0),cout.tie(0);
typedef long long ll;

const int N = 2e5 + 10;
ll a[N], t[N];
vector<int> X;

int lowbit(int x) {
	return x & (-x);
}
void update(int k, int x) {
	//离散化后范围变成X.size()
	for (int i = k; i <= X.size(); i += lowbit(i)) t[i] += x; 
}
ll getsum(int k) {
	ll res = 0;
	for (int i = k; i >= 1; i -= lowbit(i)) res += t[i];
	return res;
}
int bin(int x) {
	return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}

int main() {
	qio
	int n; cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> a[i];
		X.push_back(a[i]);
	}
	sort(X.begin(), X.end());
	X.erase(unique(X.begin(), X.end()), X.end());
	ll ans = 0;
	for (int i = 1; i <= n; i++) {
		ans += 1ll * getsum(X.size()) - getsum(bin(a[i]));
		update(bin(a[i]), 1);
	}
	cout << ans << '\n';
}

2.Problem - 652D - Codeforces

线段包含

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
typedef long long ll;
typedef double db;
void solve();

signed main() {
	qio
	int T = 1;
//	cin >> T;
	while (T--)solve();
}

const int N = 2e5 + 10;
ll t[N], ans[N];
struct segment {
	int l, r, id;
	bool operator < (const segment a) const {
		return (this-> l) > a.l;
	}
} s[N];
vector<int> X;
int lowbit(int x) {
	return x & (-x);
}
void update(int k, int x) {
	for (int i = k; i <= X.size(); i += lowbit(i)) {
		t[i] += x;
	}
}
ll getsum(int k) {
	ll res = 0;
	for (int i = k; i >= 1; i -= lowbit(i)) {
		res += t[i];
	}
	return res;
}

int bin(int x) {
	return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}

void solve() {
	int n;
	cin >> n;
	for (int i = 1; i <= n; i++) {
		cin >> s[i].l >> s[i].r;
		s[i].id = i;
		X.push_back(s[i].r);
	}
	sort(s + 1, s + 1 + n);
	sort(X.begin(), X.end());
	X.erase(unique(X.begin(), X.end()), X.end());
	for (int i = 1; i <= n; i++) {
		ans[s[i].id] = getsum(bin(s[i].r));
		update(bin(s[i].r), 1);
	}

	for (int i = 1; i <= n; i++) {
		cout << ans[i] << '\n';
	}
}

3.P3605 [USACO17JAN] Promotion Counting P

#include<bits/stdc++.h>
using namespace std;
#define qio ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
typedef long long ll;
typedef double db;

const int N = 2e5 + 10;
vector<int> g[N];
ll a[N], t[N], ans[N];
vector<int> X;
int n;

int bin(int x){
	return lower_bound(X.begin(), X.end(), x) - X.begin() + 1;
}
int lowbit(int x){
	return x & (-x);
}
void update(int pos, int x){
	for(int i = pos; i <= (int)X.size(); i += lowbit(i)) t[i] += x;
}
ll getsum(int pos){
	ll res = 0;
	for(int i = pos; i >= 1; i -= lowbit(i)){
		res += t[i];
	}
	return res;
}

void dfs(int now){
	//减去原来就比自己强的
	ans[now] = -(getsum(X.size()) - getsum(bin(a[now])));
	for(auto &nex : g[now]){
		dfs(nex);
	}
	//update完子树中比自己强的,再加上比自己强的
	ans[now] += getsum(X.size()) - getsum(bin(a[now]));
	update(bin(a[now]), 1);
}

signed main() {
	cin >> n;
	for(int i = 1; i <= n; i++){
		cin >> a[i];
		X.push_back(a[i]);
	}
	for(int i = 2; i <= n; i++){
		int x; cin >> x;
		g[x].push_back(i);
	}
	sort(X.begin(), X.end());
	X.erase(unique(X.begin(), X.end()), X.end());
	dfs(1);
	for(int i = 1; i <= n; i++){
		cout << ans[i] << '\n';
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值