VsCode使用技巧 打开终端!!Ctrl+`打开设置:Ctrl+逗号打开中间的Control Pallete: Ctrl+Shift+P运行部分代码:选中之后按Shift+Enter或者右键选择run selectedAlt +Click创建一个新光标并在两个光标的位置同时打字。选中一个变量名,之后Ctrl+Shift+L可以全选所有该名字出现的位置,就可以全部都替换。Ctrl+空格 提示后续可以输入的函数或方法(但搜狗输入法下会会导致中英切换)整体向上或向下移动一行:光标放那一行,Alt+up/down在上方
【Review】自然语言处理发展史中的里程碑总结 本次搬运Sebastian Ruder的博客A Review of the Neural History of Natural Language Processing,可以快速了解深度学习时代NLP的发展历史及其中的里程碑式工作。2001 Neural language models语言建模是指在给定前面若干个单词的情况下,预测文本下一个出现的单词。这是一个最简单的自然语言处理任务,但同时有着最具体的应用。传统方法使用n-gram模型进行语言建模,并用不同平滑方法处理未出现的n-gram。[1]第一个
强化学习笔记(二) Q-learning: 基于价值,单步更新,离线学习(采样策略不是真实的目标策略)Sarsa: 基于价值,单步更新,在线学习(走一步学一步,采样策略与目标策略相同)Policy Gradients: 基于概率,回合更新(基础版)DQNDQN: Deep Q-learning Network, 获取Q(s,a)值的方法从Q-table表格式存储检索换成神经网络计算生成。输入是state,输出是该state下每个action的Q(s, a)。经验回放 Experience Replay:在replay
强化学习笔记(一) 第五章 蒙特卡洛方法(MC)(一)MC策略评估1.MC prediction: 估计状态值First-visit MC prediction算法,用来估计每个状态值。也有every-visit,不过没有first-visit用的多-和DP相比:MC方法对每个状态值的估计是独立的,没有用到自己以前的状态,称为没有用到bootstraping2.MC estimation of action values: 估计动作值在模型不可知的情况下,估计状态动作值q(s,a)比估计状态值v(s)更有用。这是因
【PyTorch学习笔记】各类torch小函数 torch.cattorch.topk()1.函数形式:torch.topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor)返回给定tensor的前k大元素和其下标2.参数:3.例子:>>> x = torch.arange(1., 6.)>>> xtensor([ 1., 2., 3., 4., 5.])>&g
【PyTorch Tutorial学习笔记】PyTorch官方教学(二) PreliminaryTensor用法tensor初始化及属性rand_tensor = torch.rand(2,3)ones_tensor = torch.ones(2,3)zeros_tensor = torch.zeros(2,3)print(tensor.shape, tensor.dtype, tensor.device)p.s.tensor默认是创建在CPU上的,需要显式地移动到GPU。# We move our tensor to the GPU if availabl
【开坑】python处理csv相关操作 #on-working# 目录读取csv使用pandas模块使用csv模块写入csv修改某一列的值读取csv使用pandas模块使用csv模块写入csv修改某一列的值
【学术方法 | 如何做研究】You and Your Research by Richard Hamming 看了所里师兄推荐的You and your research,是由Richard Hamming教授的演讲整理出来的讲稿和Q&A,记录了若干我觉得重要的点1.做出great research的重要特质:Courage, Drive, Ambiguity…关于Luck: luck is for prepared mind. And it’s not all about luck.Yes, I would like to do something significant.要有勇气。好的工作环
【学术方法 | 文献阅读】How to Read Papers 今天搬运这篇帖子里S. Keshav老师讲到的读文章的方法。(一)单篇文章的“三遍阅读法”1.第一遍用时:5-10min目的:get general idea解释:快速阅读标题、摘要、intro、节标题、结论、参考文献,不读其他部分。了解文章的category, context, correctness, contribution, clarity。留意参考文献,并标注其中已看过的文章。第一遍阅读后决定是否要深入阅读这篇文章。(同理,写文章时,也按大部分人是one pass阅读的标准来写)
DocRED数据集及其baseline #on-working# DocRED是thunlp在2019年发布的一个大规模、人工标注、通用领域的篇章级别关系抽取数据集。数据来源是wikipedia和wikidata。paper, codeDataset:人工标注数据:来自5053篇维基百科文档,共13w个实体,5w个关系远程监督数据:来自101873篇维基百科文档(10w+),共255w个实体,88w个关系1.数据处理流程:Stage 1: Distantly Supervised Annotation Generation维基百科文档的introductor
Pycharm操作指南 #on-working# 1. deployment为灰色,无法上传远程服务器依次尝试配置服务器地址-将该地址设为默认地址-设置正确的mapping。大概率是因为没有设置默认或者mapping导致的。可以参考这篇博客。
pytorch nn.Linear的用法和理解 先贴官方文档nn.Linear是完成从in_features到out_features的线性变换。实例化完成后input的大小可以有多维,但最后一维的大小必须和in_features一致。>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128,
pytorch nn.LSTM及nn.LSTMCell的用法和理解 照例先贴官方文档~以下是实例化一个nn.LSTM单元时会用到的参数,例如lstm = nn.LSTM(10, 20, 2)就实例化了一个input_size=10, hidden_size=20,num_layer=2的LSTM网络,也就是输入的维度为10,隐层的神经元数目为20,总共有2个隐层。实例化好的LSTM如何使用呢?以下是输入,h0和c0都是可选的,重点是input,是一个表示输入序列特征的tensor,维度是(seq_len, batch, input_size),比如接上例,x = to
SpERT源码阅读 #on-working# 项目重要文件的目录树如下:spert│ args.py # 各种参数的设置│ config_reader.py # 读取并处理config文件│ spert.py # 程序入口│ __init__.py # 空文件,用于构成package├─bert-base-chinese│ bert_config.json│ config.json│ pytorch_model.bin│ vocab.