pytorch nn.Embedding的用法和理解

本文详细解析PyTorch中的nn.Embedding模块,包括其作为lookup table的性质和如何通过indices获取word embeddings。通过示例解释了nn.Embedding.from_pretrained()的用法,说明了输入为indices时如何从weight矩阵中取出对应的词向量,形成二维句子的三维词向量张量。
摘要由CSDN通过智能技术生成

(2021.05.26补充)nn.Embedding.from_pretrained()的使用:
在这里插入图片描述

>>> # FloatTensor containing pretrained weights
>>> weight = torch.FloatTensor([[1, 2.3, 3], [4, 5.1, 6.3]])
>>> embedding = nn.Embedding.from_pretrained(weight)
>>> # Get embeddings for index 1
>>> input = torch.LongTensor([1])
>>> embedding(input)
tensor([[ 4.0000,  5.1000,  6.3000]])

首先来看official docs对nn.Embedding的定义:
是一个lookup table,存储了固定大小的dictionary(的word embeddings)。输入是indices,来获取指定indices的word embedding向量。
在这里插入图片描述

评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值