自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 收藏
  • 关注

原创 推荐系统学习笔记-Part6 GBDT+LR

GDBT+LR 前面介绍的协同过滤和矩阵分解存在的劣势就是仅利用了用户与物品相互行为信息进行推荐, 忽视了用户自身特征, 物品自身特征以及上下文信息等,导致生成的结果往往会比较片面。 而这次介绍的这个模型是2014年由Facebook提出的GBDT+LR模型, 该模型利用GBDT自动进行特征筛选和组合, 进而生成新的离散特征向量, 再把该特征向量当做LR模型的输入, 来产生最后的预测结果, 该模型能够综合利用用户、物品和上下文等多种不同的特征, 生成较为全面的推荐结果, 在CTR点击率预估场景下使用较为广泛

2020-10-28 23:41:45 23

原创 推荐系统学习笔记-Part4Wide&Deep

CTR点击率预估 点击率预估是对每次广告点击情况作出预测,可以输出点击或者不点击,也可以输出该次点击的概率,后者有时候也称为pClick. 通过上述点击率预估的基本概念,我们会发现其实点击率预估问题就是一个二分类的问题,在机器学习中可以使用逻辑回归作为模型的输出,其输出的就是一个概率值,我们可以将机器学习输出的这个概率值认为是某个用户点击某个广告的概率。 点击率预估与推荐算法有什么不同? 广告点击率预估是需要得到某个用户对某个广告的点击率,然后结合广告的出价用于排序;而推荐算法很多大多数情况下只需要得到一个

2020-10-27 22:31:27 11

原创 推荐系统学习笔记-Part3矩阵分解

隐语义模型与矩阵分解 协同过滤算法的特点就是完全没有利用到物品本身或者是用户自身的属性, 仅仅利用了用户与物品的交互信息就可以实现 推荐,是一个可解释性很强, 非常直观的模型, 但是也存在一些问题。 第一个就是处理稀疏矩阵的能力比较弱, 所以为 了使得协同过滤更好处理稀疏矩阵问题,增强泛化能力, 从协同过滤中衍生出矩阵分解模型(Matrix Factorization,MF)或 者叫隐语义模型, 两者差不多说的一个意思, 就是在协同过滤共现矩阵的基础上, 使用更稠密的隐向量表示用户和物品, 挖掘用户和物品

2020-10-25 23:45:07 10

原创 推荐系统学习笔记-Part2协同过滤

推荐系统-协同过滤 协同过滤(Collaborative Filtering)推荐算法是最经典、最常用的推荐算法。+ 所谓协同过滤, 基本思想是根据用户之前的喜好以及其他兴趣相近的用户的选择来给用户推荐物品(基于对用户历史行为数据的挖掘发现用户的喜好偏向, 并预测用户可能喜好的产品进行推荐),一般是仅仅基于用户的行为数据(评价、购买、下载等), 而不依赖于项的任何附加信息(物品自身特征)或者用户的任何附加信息(年龄, 性别等)。目前应用比较广泛的协同过滤算法是基于邻域的方法, 而这种方法主要有下面两种算法:

2020-10-22 23:05:17 13

原创 Hive学习笔记整理概括

Hive 以下是笔者对Hive的一些认知以及笔记 什么是Hive 1.Hive是基于Hadoop的一个数据仓库工具; 2.Hive提供Hql(Hive sql)查询功能; 3.数据是存储在HDFS上,Hive本身不存储数据,构建表的逻辑存在知道数据库上(mysql); 4.Hive的本质是将SQL语句转换为MapReduce任务执行; 5.离线大数据计算。 HQL与SQL ~ HQL SQL 数据存储 HDFS、Hbase LocalFS(本地FileSystem) 数据格式 用户自定义

2020-10-21 10:14:24 23 2

原创 推荐系统学习笔记-Part1

推荐系统简介 推荐系统是利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售 人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信 息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到 自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。 为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级 商务智能平台,以帮助电子商务

2020-10-19 17:01:14 57 1

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除