git 管理代码 管理代码步骤图片来源:慕课网Workspace:工作区Index / Stage:暂存区Repository:仓库区(或本地仓库)Remote:远程仓库代码流程cd existing_folder# git 初始化git init# 链接远程的gitlab地址git remote add origin http://gitlabxxxxxxxx.gitgit add -allgit commit# 由于远程库是空的,我们第一次推送master分支时,加上了 –u参数,Git不但
3D视觉基础整理 (一) 相机内参外参相机内参数是与相机自身特性相关的参数,比如相机的焦距、像素大小等;相机外参数是在世界坐标系中的参数,比如相机的位置、旋转方向等相机标定相机标定的目的是确定相机的一些参数的值。通常,这些参数可以建立定标板确定的三维坐标系和相机图像坐标系的映射关系,换句话说, 你可以用这些参数把一个三维空间中的点映射到图像空间,或者反过来。基础概念● 我们必须移动相机之后,才能估计它的 运动(Motion)● 同时估计场景中物体的远近和大小,不妨称之为结构(Structure)● 近处的物体移动快,
matplotlib 二元变量分析 from matplotlib import pyplot as pltimport numpy as npfrom mpl_toolkits.mplot3d import Axes3Dfrom scipy.special import softmaxfig = plt.figure()ax = Axes3D(fig)X = np.arange(0.1, 1, 0.05)Y = np.arange(0.1, 1, 0.05)X, Y = np.meshgrid(X, Y)# Z = X.
Pytorch 随机种子的设置 之前设置过随机种子,但是网络依旧具有随机性。今天刚好看到了mmdetection的实现,才发现之前的code不是所有的随机种子都被固定下来。def set_random_seed(seed, deterministic=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic .
Pytorch 训练停止,输出显示 died with <Signals,SIGKILL.9> 问题定位过程记录 最近使用 Pytorch 进行模型训练时,模型在训练到一小部分后程序均被停止。第一次以为是由于机器上其他人的误操作,故而直接重新拉起训练。但第二次程序终止时,发现基本与第一次训练停止的训练 iteration 一致,故而尝试对问题进行定位。问题描述具体而言,在使用 Pytorch 训练时的错误信息类似如下所示: File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec)
python process 多进程 查看计算机最大进程数(不支持win)ulimit -uprocess 多进程for 循环用多进程优化,我的电脑测试快了7-8倍,并行数目很大时候会报错,因为计算机无法支持那么多进程。这里我用了一下 i%32==0,先暂时同步一下进程。注意,这部分程序必须写到 __name__ == "__main__" 里面。target后面跟的是函数名称args就是函数的参数列表from multiprocessing import Processif __name__ == "__main__":
python 生成目录结构 & 绝对路径导入问题 生成目录结构树状目录结构生成WorkingDirection/├────point2mask/│ └────main-v1.py├────statistics_point/│ ├────__init__.py│ ├────do_statistics.py更改下面代码路径就行了import refrom pathlib import Pathfrom pathlib import WindowsPathfrom typing import Optional, Li
全景分割2017-2020整理 定义语义分割的任务是预测每个像素点的语义类别(即预测stuff,东西),而实例分割的任务是预测每个实例物体包含的像素区域(即预测thing,事物),分别如上图b和c所示。然而从图片中可以看出,语义分割和实例分割都不足以完备的描述出一副图像中的视觉信息,2019年FAIR首次提出全景分割的概念,全景分割任务需要同时预测出每个像素点赋予类别Label和实例ID(即同时预测thing和stuff,如图d所示)全景分割任务的重点在于为每个像素分配一个语义标签和实例 ID 对于一幅输入图像, 首先提取特征. 然
deformable DETR 核心思路记录 原文链接:https://arxiv.org/abs/2010.04159encoder_layer = MSDeformAttnTransformerEncoderLayerMSDeformAttnTransformerEncoderLayer( (self_attn): MSDeformAttn( (sampling_offsets): Linear(in_features=256, out_features=192, bias=True) (attention_weight.
swin transformer 核心代码记录 目前更新部分包括swin的基本setting,基本模块,相对位置坐标理解和部分代码展示。swin 包含了四种setting,依次是tiny,small, base 和 large。可以类比resnet。Swin-b 主体部分网络结构 BasicLayer结构展示BasicLayer( (blocks): ModuleList( (0): SwinTransformerBlock( (norm1): LayerNorm((128,), eps=1e-05, el.
Kernel based instance segmentation dynamic kernel 在high level 用了很多,这里记录一下目录CondInst ECCV 2020之前方法的问题之前方法归类本文最大亮点Instance-aware mask head整体网络结构SOLO V2 NIPS 2020之前方法的问题本文最大亮点网络结构图CondInst ECCV 2020conditional convolutions for instance segmentation之前方法的问题bounding box 是方方正正的,对于irreg.
更改linux默认缓存:PermissionError: [Errno 13] Permission denied: ‘/.cache‘ export XDG_CACHE_HOME=/path$XDG_CACHE_HOME