如何使用pickle将机器学习模型保存和加载
机器学习应用的兴起,让许多数据科学家、工程师们能够轻松地训练出一个优秀的模型。然而,许多人却不知道如何将这个模型保存下来,以便在未来的时候使用它。本文将介绍如何使用Python中的pickle来保存和加载机器学习模型。
pickle是Python语言内置的序列化模块,它可以将Python对象转换为以字节为单位的序列,以便在磁盘或网络中存储对象或通过网络传输对象。在我们的情景中,这些对象就是训练好的机器学习模型。
首先,我们需要先安装pickle模块,如果你已经有了Python环境,那么只需要在终端中输入以下命令即可:
pip install pickle
接着,我们需要先训练一个机器学习模型,以便后续进行保存和加载操作。这里我们选取了scikit-learn库中的决策树分类器作为示例。
from sklearn.datasets import load_iris
from sklearn.tre
本文介绍了如何使用Python的pickle模块保存和加载训练好的机器学习模型,以决策树分类器为例,详细展示了保存和加载的过程。
订阅专栏 解锁全文
241

被折叠的 条评论
为什么被折叠?



