《剑指Offer》Java刷题 NO.66 机器人的运动路径(数组、DFS、BFS、最大连通域)

《剑指Offer》Java刷题 NO.66 机器人的运动路径(数组、DFS、BFS、最大连通域)

传送门:《剑指Offer刷题总目录》

时间:2020-07-28
题目:

地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?


思路:
一开始理解错了,以为是机器人沿着某条路径不回头的走最远能走几个格子,但其实这里机器人可以回头然后向别的方向去走,但是计数是累积的,也就是求满足某个条件的最大连通域问题,所以只要维护一个全局可达的count,然后遍历就可以了,走过的格子要标记一下,不能重复走;可以用BFS也可以用DFS;这题回溯的时候不用恢复值
DFS复杂度:
时间复杂度:O(mn), m,n为矩阵大小,每个元素最多访问过一次
空间复杂度:O(mn)
BFS复杂度:
时间复杂度:O(mn), m,n为矩阵大小,每个元素最多访问过一次
空间复杂度:O(2*mn),每个格子需要把横坐标和纵坐标都保存进队列


Java代码:

import java.util.LinkedList;
import java.util.Queue;

/**
 * @author LiMin
 * @Title: MovingCount
 * @Description: 地上有一个m行和n列的方格。一个机器人从坐标0,0的格子开始移动,每一次只能向左,右,上,下四个方向移动一格,但是不能进入行坐标和列坐标的数位之和大于k的格子。
 * 例如,当k为18时,机器人能够进入方格(35,37),因为3+5+3+7 = 18。但是,它不能进入方格(35,38),因为3+5+3+8 = 19。请问该机器人能够达到多少个格子?
 * @date 2020/7/28  14:55
 */
public class MovingCount {
    public static void main(String[] args) {
        MovingCount moving = new MovingCount();
        System.out.println(moving.movingCount(3, 3, 3));
    }

    private int count;

    public int movingCount(int threshold, int rows, int cols) {
        if (threshold < 0 || rows <= 0 || cols <= 0) {
            return 0;
        }
        boolean[][] flag = new boolean[rows][cols];//默认初始化为false
//        dfs(flag,threshold,rows,cols,0,0);
//        return count;
        return bfs(flag, threshold, rows, cols);
    }

    private void dfs(boolean[][] flag, int threshold, int rows, int cols, int x, int y) {
        //边界和check条件判断
        if (x < 0 || x >= cols || y < 0 || y >= rows || flag[y][x] == true || !check(threshold, x, y)) {
            return;
        }
        //标记为已访问
        flag[y][x] = true;
        count++;//走过了一个新的格子
        dfs(flag, threshold, rows, cols, x + 1, y);
        //回过头去走其他格子的时候count是累加的,不用恢复
        dfs(flag, threshold, rows, cols, x - 1, y);
        dfs(flag, threshold, rows, cols, x, y + 1);
        dfs(flag, threshold, rows, cols, x, y - 1);
        //已经走过的格子不能再走第二次,所以不用恢复
        //牛客评论区看到一个不用维护全局变量result的写法:dfs返回类型设置为int,直接return四个方向的和然后+1(当前所在格子)
    }

    private int bfs(boolean[][] flag, int threshold, int rows, int cols) {
        Queue<Integer> queue = new LinkedList<>();
        int[][] dir = {{1, 0}, {0, 1}, {-1, 0}, {0, -1}};
        queue.offer(0);
        queue.offer(0);
        flag[0][0] = true;
        count = 1;
        while (!queue.isEmpty()) {
            int x = queue.poll();
            int y = queue.poll();
            for (int i = 0; i < 4; i++) {
                int newx = x + dir[i][0];
                int newy = y + dir[i][1];
                if (newx < 0 || newx >= cols || newy < 0 || newy >= rows || flag[newy][newx] == true || !check(threshold, newx,
                        newy)) {
                    continue;
                } else {
                    flag[newy][newx] = true;
                    queue.offer(newx);
                    queue.offer(newy);
                    count++;
                }
            }

        }
        return count;
    }

    private boolean check(int threshold, int x, int y) {
        int sum = 0;
        while (x != 0) {
            sum += x % 10;
            x /= 10;
        }
        while (y != 0) {
            sum += y % 10;
            y /= 10;
        }
        if (sum <= threshold) {
            return true;
        }
        return false;
    }
}
1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。2.网上数据结构和算法的课程不少,但存在两个问:1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问,有针对性的进行了升级 3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问及衍生出的面试,让你秒杀其他面试小伙伴3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。教程内容:本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问、八皇后问、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。学习目标:通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。
©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页