卷积神经网络基础理解

这篇博客适合初学者,通过直观的方式解释卷积神经网络(CNN)的工作原理,包括卷积过程和samepadding的概念。配合生动的动图,帮助理解卷积核如何进行张量积运算,尤其是通道数的影响。文章特别关注了卷积核张量积后通道数保持为1的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本来跟着《python深度学习》学习卷积神经网络,但是发现这本书对于初学的小白并不是十分友好,有些专业名词的堆积让人根本不清楚在讲些什么。经过网上的不断寻找,再将一些博客对比学习,很快就明白了其中的原理。
从零开始搭建神经网络-卷积神经网络(CNN)
这篇文章对于卷积过程的原理介绍简单粗暴,没有那么多文字描述,同时理解起来也比较容易,再加上下面这篇博客中的same padding和value padding相关的两个动图,就对一些基础概念理解得比较透彻了。
卷积操作的基础知识

注:附上我认为最难理解的卷积核的张量积过程。
在这里插入图片描述
在这里插入图片描述

疑问就在这儿,为什么加了通道数3之后,张量积之后得到的通道数怎么还是1。事实上,如图所示,A=a1+b2+c*3。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值