神经网络训练集和验证集的原理理解(二)

最近在看《机器学习实战——基于Scikit-Learn和Tensorflow》的时候,发现其对于训练集、验证集、测试集的讲解很透彻,值得分享一下。

现摘录如下:

  1. 了解一个模型对于新场景的泛化能力的唯一办法就是,让模型真实地去处理新场景。做法之一是将其部署在生产环境,然后监控它的输出。这个方法用起来不错,不过如果模型非常糟糕,你的用户就会抱怨——所以这显然不是最好的办法。

更好的选择是将你的数据分割成两部分:训练集测试集。顾名思义,用训练集的数据训练模型,然后用测试集的数据来测试模型。
应对新场景的误差率称为泛化误差,通过测试集来评估你的模型,就可以得到对这个误差的评估。这个估值可以告诉你,你的模型在处理新场景时的能力如何。 如果训练误差很低(模型对于训练集很匹配,很少出错),但是泛化误差很高,那说明你的模型对于训练数据存在过度拟合

  1. 所以评估一个模型很简单,用测试集就行了。现在假设你在两个模型(一个线性模型和一个多项式模型)之间犹豫不决,如何做出判断呢?

做法是训练两个模型,然后对比它们对测试数据的泛化能力。

  1. 现在让我们假设线性模型的泛化能力更强,但是你想要应用一些正则化来避免过度拟合。问题又来了,你要如何选择正则化超参数的值呢?

做法之一是使用100个不同的超参数值来训练100个不同的模型。然后假设你由此找到了最佳的超参数值,它生成的模型泛化误差最小,比如仅仅5%。

  1. 然后你将这个模型运行在生产环境,可是很不幸,它并没有如预期那样工作,反而产生了15%的误差,这到底发生了什么。

问题出在你对测试集的泛化误差进行了多次度量,并且调整模型和超参数来得到拟合那个测试集的最佳模型。这意味着该模型对于新的数据不太可能有良好的表现。

常见的解决方案是再单独分出来一个保留集合,称为验证集

在训练集上,使用不同的超参数训练多个模型,然后通过验证集,选择最好的那个模型和对应的超参数,当你对模型基本满意之后,再用测试集运行最后一轮测试,并得到泛化误差的估值。

  1. 为了避免验证集“浪费”太多的训练数据

常见的技术是使用交叉验证:将训练集分成若干个互补子集,然后每个模型都通过这些子集的不同组合来进行训练,之后用剩余的子集进行验证。一旦模型和超参数都被选定,最终的模型会带着这些超参数对整个训练集进行一次训练,最后再用测试集测量泛化误差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值