P2398 GCD SUM (三种思路)

题目链接:点击这里

题目大意:
给定正整数 n n n 求:
∑ i = 1 n ∑ j = 1 n gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) i=1nj=1ngcd(i,j)

题目分析:

  • 方法一:
    用莫比乌斯反演化简式子(具体推导:点击这里)可以得到:
    ∑ i = 1 n ∑ j = 1 n gcd ⁡ ( i , j ) \sum_{i=1}^n\sum_{j=1}^n\gcd(i,j) i=1nj=1ngcd(i,j)
    = ∑ x = 1 n ⌊ n x ⌋ ⌊ n x ⌋ φ ( x ) =\sum_{x=1}^n \lfloor \frac nx \rfloor\lfloor \frac nx \rfloor φ(x) =x=1nxnxnφ(x)
    然后通过整除分块,线筛欧拉函数前缀和解决,时间复杂度为 O ( n ) O(n) O(n)
int cnt,pri[maxn],mu[maxn],phi[maxn],sum[maxn];
bool vis[maxn];
void get_phi()
{
	phi[1] = sum[1] = vis[1] = 1;
	for(int i = 2;i < maxn;i++)
	{
		if(!vis[i])
		{
			pri[++cnt] = i;
			phi[i] = i-1;
		}
		for(int j = 1;j <= cnt && i*pri[j] < maxn;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) 
			{
				phi[i*pri[j]] = phi[i]*pri[j];
				break;
			}
			else phi[i*pri[j]] = phi[i]*(pri[j]-1);
		}
		sum[i] = sum[i-1]+phi[i];
	}
}
signed main()
{
	get_phi();
	int n = read();
	ll ans = 0;
	for(int l = 1,r;l <= n;l = r+1)
	{
		r = n/(n/l);
		ans += 1ll*(sum[r]-sum[l-1])*(n/l)*(n/l);
	}
	printf("%lld\n",ans);
	return 0;
}
  • 方法二:
    考虑枚举所有 gcd ⁡ \gcd gcd 值计算,令 gcd ⁡ ( i , j ) = 1 \gcd(i,j)=1 gcd(i,j)=1 ,则有 gcd ⁡ ( i k , j k ) = k \gcd(ik,jk)=k gcd(ik,jk)=k ,所以 gcd ⁡ ( i , j ) = k \gcd(i,j)=k gcd(i,j)=k 的个数为:
    2 ∗ ∑ i = 1 ⌊ n k ⌋ φ ( i ) − 1 2*\sum_{i=1}^{\lfloor \frac nk \rfloor}φ(i)-1 2i=1knφ(i)1
    减1是因为 ( x , y ) (x,y) (x,y) ( y , x ) (y,x) (y,x) 均可对答案产生贡献,但 ( 1 , 1 ) (1,1) (1,1) 只能对答案产生一次贡献
    线筛求一下欧拉函数前缀和即可,时间复杂度为 O ( n ) O(n) O(n)
int cnt,pri[maxn],mu[maxn],phi[maxn],sum[maxn];
bool vis[maxn];
void get_phi()
{
	phi[1] = sum[1] = vis[1] = 1;
	for(int i = 2;i < maxn;i++)
	{
		if(!vis[i])
		{
			pri[++cnt] = i;
			phi[i] = i-1;
		}
		for(int j = 1;j <= cnt && i*pri[j] < maxn;j++)
		{
			vis[i*pri[j]] = true;
			if(i%pri[j] == 0) 
			{
				phi[i*pri[j]] = phi[i]*pri[j];
				break;
			}
			else phi[i*pri[j]] = phi[i]*(pri[j]-1);
		}
		sum[i] = sum[i-1]+phi[i];
	}
}
signed main()
{
	get_phi();
	int n = read();
	ll ans = 0;
	for(int i = 1;i <= n;i++)
		ans += (sum[n/i]*2-1)*i;
	printf("%lld\n",ans);
	return 0;
}
  • 方法三:
    f ( n ) = ∑ i = 1 n ∑ j = 1 n [ gcd ⁡ ( i , j ) = n ] f(n)=\sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=n] f(n)=i=1nj=1n[gcd(i,j)=n]
    F ( x ) = ∑ x ∣ d f ( d ) = ⌊ n x ⌋ ⌊ n x ⌋ F(x)=\sum_{x|d}f(d)=\lfloor \frac n x \rfloor \lfloor \frac n x \rfloor F(x)=xdf(d)=xnxn
    = f ( x ) + f ( 2 x ) + . . . + f ( k x ) = ∑ i = 1 ⌊ n x ⌋ f ( i x ) =f(x)+f(2x)+...+f(kx)=\sum_{i=1}^{\lfloor \frac n x \rfloor}f(ix) =f(x)+f(2x)+...+f(kx)=i=1xnf(ix)
    所以有:
    f ( x ) = ⌊ n x ⌋ ⌊ n x ⌋ − ∑ i = 2 ⌊ n x ⌋ f ( i x ) f(x)=\lfloor \frac n x \rfloor \lfloor \frac n x \rfloor-\sum_{i=2}^{\lfloor \frac n x \rfloor}f(ix) f(x)=xnxni=2xnf(ix)
    时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) (调和级数: n ( 1 1 + 1 2 + 1 3 + . . . + 1 n ) ≈ n l o g n n(\frac 11 +\frac12 +\frac13 +...+\frac1n) \approx nlogn n(11+21+31+...+n1)nlogn
ll f[maxn];
signed main()
{
	int n = read();
	ll ans = 0;
	for(int i = n;i;i--)
	{
		f[i] = n/i*(n/i);
		for(int j = 2*i;j <= n;j += i)
			f[i] -= f[j];
		ans += f[i]*i;
	}
	printf("%lld\n",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值