全网最详细Flink之Watermark机制

一、Flink之Watermark

在上一篇文章中我们介绍了窗口相关的内容,那么问题来了,假如我们实时处理蒸漂亮同学的行为,结果蒸漂亮恰好网络异常,本来我们窗口设置的5秒一算,而她刚才的行为恰巧属于上一个5秒窗口A计算的,但是网络异常后使得她的这次行为数据进入了到了下一个5秒B中计算。那么我们的计算是不是就存在了问题!!所以这时我们就需要去了解下咱们的Watermark了,当然为了理解的更清晰会再举例介绍!

1.1 基本概念之是什么

推迟窗口触发的时间,实现方式:通过当前窗口中最大的eventTime-延迟时间所得到的Watermark与窗口原始触发时间进行对比,当Watermark大于窗口原始触发时间时则触发窗口执行!!!我们知道,流处理从事件产生,到流经source,再到operator,中间是有一个过程和时间的,虽然大部分情况下,流到operator的数据都是按照事件产生的时间顺序来的,但是也不排除由于网络、分布式等原因,导致乱序的产生,所谓乱序,就是指Flink接收到的事件的先后顺序不是严格按照事件的Event Time顺序排列的。

在这里插入图片描述
那么此时出现一个问题,一旦出现乱序,如果只根据eventTime决定window的运行,我们不能明确数据是否全部到位,但又不能无限期的等下去,此时必须要有个机制来保证一个特定的时间后,必须触发window去进行计算了,这个特别的机制,就是Watermark

  • Watermark是一种衡量Event Time进展的机制
  • Watermark是用于处理乱序事件的,而正确的处理乱序事件,通常用Watermark机制结合window来实现。
  • 数据流中的Watermark用于表示timestamp小于Watermark的数据,都已经到达了,因此,window的执行也是由Watermark触发的。
  • Watermark可以理解成一个延迟触发机制,我们可以设置Watermark的延时时长t,每次系统会校验已经到达的数据中最大的maxEventTime,然后认定eventTime小于maxEventTime - t的所有数据都已经到达,如果有窗口的停止时间等于maxEventTime – t,那么这个窗口被触发执行。
    有序流的Watermarker如下图所示:(Watermark设置为0)

在这里插入图片描述
乱序流的Watermarker如下图所示:(Watermark设置为2)
在这里插入图片描述
当Flink接收到数据时,会按照一定的规则去生成Watermark,这条Watermark就等于当前所有到达数据中的maxEventTime - 延迟时长,也就是说,Watermark是由数据携带的,一旦数据携带的Watermark比当前未触发的窗口的停止时间要晚,那么就会触发相应窗口的执行由于Watermark是由数据携带的,因此,如果运行过程中无法获取新的数据,那么没有被触发的窗口将永远都不被触发。
上图中,我们设置的允许最大延迟到达时间为2s,所以时间戳为7s的事件对应的Watermark是5s,时间戳为12s的事件的Watermark是10s,如果我们的窗口1是1s-5s,窗口2是6s-10s,那么时间戳为7s的事件到达时的Watermarker恰好触发窗口1,时间戳为12s的事件到达时的Watermark恰好触发窗口2。

Watermark 就是触发前一窗口的“关窗时间”,一旦触发关门那么以当前时刻为准在窗口范围内的所有所有数据都会收入窗中。只要没有达到水位那么不管现实中的时间推进了多久都不会触发关窗。

1.2 Watermark的引入

watermark的引入很简单,对于乱序数据,最常见的引用方式如下:

dataStream.assignTimestampsAndWatermarks( new BoundedOutOfOrdernessTimestampExtractor[SensorReading](Time.milliseconds(1000)) {
 override def extractTimestamp(element: SensorReading): Long = {
   element.timestamp * 1000
 }
} )

Event Time的使用一定要指定数据源中的时间戳。否则程序无法知道事件的事件时间是什么(数据源里的数据没有时间戳的话,就只能使用Processing Time了)。
我们看到上面的例子中创建了一个看起来有点复杂的类,这个类实现的其实就是分配时间戳的接口。Flink暴露了TimestampAssigner接口供我们实现,使我们可以自定义如何从事件数据中抽取时间戳。

val env = StreamExecutionEnvironment.getExecutionEnvironment

// 从调用时刻开始给env创建的每一个stream追加时间特性
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime)

val readings: DataStream[SensorReading] = env
.addSource(new SensorSource)
.assignTimestampsAndWatermarks(new MyAssigner())

MyAssigner有两种类型

  • AssignerWithPeriodicWatermarks
  • AssignerWithPunctuatedWatermarks

以上两个接口都继承自TimestampAssigner。

1.2.1 定期水位线(Assigner with periodic watermarks)

上面讲述了根据从事件数据中去获取时间戳设置水位线,但存在的问题是没有达到水位线时不管现实中的时间推进了多久都不会触发关窗,所以接下来我们就来介绍下定期水位线(Periodic Watermark)按照固定时间间隔生成新的水位线,不管是否有新的消息抵达,水位线提升的时间间隔是由用户设置的,在两次水位线提升时隔内会有一部分消息流入,用户可以根据这部分数据来计算出新的水位线。举个例子,最简单的水位线算法就是取目前为止最大的事件时间,然而这种方式比较暴力,对乱序事件的容忍程度比较低,容易出现大量迟到事件。

应用定期水位线需要实现AssignerWithPeriodicWatermarks API,以下是 Flink 官网提供的定期水位线的实现例子。

class BoundedOutOfOrdernessGenerator extends AssignerWithPeriodicWatermarks[MyEvent] {
    val maxOutOfOrderness = 3500L; // 3.5 seconds
    var currentMaxTimestamp: Long;
    override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = {
        val timestamp = element.getCreationTime()
        currentMaxTimestamp = max(timestamp, currentMaxTimestamp)
        timestamp;
    }
    override def getCurrentWatermark(): Watermark = {
        // return the watermark as current highest timestamp minus the out-of-orderness bound
        new Watermark(currentMaxTimestamp - maxOutOfOrderness);
    }
}

其中extractTimestamp用于从消息中提取事件时间,而getCurrentWatermark用于生成新的水位线,新的水位线只有大于当前水位线才是有效的。每个窗口都会有该类的一个实例,因此可以利用实例的成员变量保存状态,比如上例中的当前最大时间戳

注:周期性的(一定时间间隔或者达到一定的记录条数)产生一个Watermark。在实际的生产中Periodic的方式必须结合时间和积累条数两个维度继续周期性产生Watermark,否则在极端情况下会有很大的延时。

1.2.2 标点水位线(Assigner with punctuated watermarks)

标点水位线(Punctuated Watermark)通过数据流中某些特殊标记事件来触发新水位线的生成。这种方式下窗口的触发与时间无关,而是决定于何时收到标记事件。
应用标点水位线需要实现AssignerWithPunctuatedWatermarks API,以下是 Flink 官网提供的标点水位线的实现例子。

class PunctuatedAssigner extends AssignerWithPunctuatedWatermarks[MyEvent] {
    override def extractTimestamp(element: MyEvent, previousElementTimestamp: Long): Long = {
        element.getCreationTime
    }
    override def checkAndGetNextWatermark(lastElement: MyEvent, extractedTimestamp: Long): Watermark = {
        if (element.hasWatermarkMarker()) new Watermark(extractedTimestamp) else null
    }
}

其中extractTimestamp用于从消息中提取事件时间,checkAndGetNextWatermark用于检查事件是否标点事件,若是则生成新的水位线。不同于定期水位线定时调用getCurrentWatermark,标点水位线是每接受一个事件就需要调用checkAndGetNextWatermark,若返回值非 null 且新水位线大于当前水位线,则触发窗口计算

注:数据流中每一个递增的EventTime都会产生一个Watermark。在实际的生产中Punctuated方式在TPS很高的场景下会产生大量的Watermark在一定程度上对下游算子造成压力,所以只有在实时性要求非常高的场景才会选择Punctuated的方式进行Watermark的生成

1.3 迟到事件

虽说水位线表明着早于它的事件不应该再出现,但是上如上文所讲,接收到水位线以前的的消息是不可避免的,这就是所谓的迟到事件。实际上迟到事件是乱序事件的特例,和一般乱序事件不同的是它们的乱序程度超出了水位线的预计,导致窗口在它们到达之前已经关闭。
迟到事件出现时窗口已经关闭并产出了计算结果,因此处理的方法有3种:

  • 重新激活已经关闭的窗口并重新计算以修正结果。
  • 将迟到事件收集起来另外处理。
  • 将迟到事件视为错误消息并丢弃。

Flink 默认的处理方式是第3种直接丢弃,其他两种方式分别使用Side Output和Allowed Lateness。

  • Side Output机制可以将迟到事件单独放入一个数据流分支,这会作为 window 计算结果的副产品,以便用户获取并对其进行特殊处理。
  • Allowed Lateness机制允许用户设置一个允许的最大迟到时长。Flink 会再窗口关闭后一直保存窗口的状态直至超过允许迟到时长,这期间的迟到事件不会被丢弃,而是默认会触发窗口重新计算。因为保存窗口状态需要额外内存,并且如果窗口计算使用了 ProcessWindowFunction API 还可能使得每个迟到事件触发一次窗口的全量计算,代价比较大,所以允许迟到时长不宜设得太长,迟到事件也不宜过多,否则应该考虑降低水位线提高的速度或者调整算法。
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页