蒟蒻柴犬首相的博客

蒟蒻柴犬首相的博客

[树状数组优化DP]BZOJ 2131 免费的馅饼

2131: 免费的馅饼 Time Limit: 10 Sec Memory Limit: 259 MB Description Input 第一行是用空格隔开的二个正整数,分别给出了舞台的宽度W(1到10^8之间)和馅饼的个数n(1到10^5)。  接下来n行,每一行给出了一块馅饼的...

2018-05-28 20:30:41

阅读数:33

评论数:0

[树状数组优化DP] HLOJ539. 人品累加和

题解 题目描述 人品是必不可少的,人品还是守恒的。每个人的人品都是不同的,并且有正的(选择题可以用骰子全过),也有负的。 海亮高级中学有n (1<=n<=100,000)(1<=n&am...

2018-05-28 18:43:00

阅读数:28

评论数:0

HLOJ#483 光棍组织

题面 题目描述 MM 虽然一辈子只要一个,但是也得早点解决。于是,n 个光棍们自发组成了一个光棍组织 (ruffian organization,By Wind 乱译)。现在,光棍们打算分成几个小组,并且分头为 找 MM 事 业做贡献(For example:searching,huntin...

2018-05-23 18:55:41

阅读数:53

评论数:0

HLOJ489 bzoj1087 状压例题3 互不侵犯的king

题面 题目描述 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子。 输入格式 只有一行,包含两个数N,K ( 1 <=N <=9, 0 &...

2018-05-16 21:24:31

阅读数:24

评论数:0

HLOJ436 添加括号

题面 题目描述 给定一个正整数序列a(1),a(2),…,a(n),(1<=n<=20) 不改变序列中每个元素在序列中的位置,把它们相加,并用括号记每次加法所得的和,称为中间和。 例如: 给出序列是4,1,2,3。 第一种添括号方法: ((4+1)+...

2018-04-19 21:19:48

阅读数:39

评论数:0

导数

导数 导数描述了一个函数的变化率。 很显然,导数可能也是一个函数。 简单来说,一个函数的导数就是这个函数图像某时刻的斜率。 求导公式 求导公式很简单,令原函数为f(n)f(n)f(n),那么 导数就是: [f(n)]′=limΔx→0f(x+Δx)−f(x)Δx[f(n)]′=l...

2018-04-02 19:09:25

阅读数:606

评论数:1

组合数学——大组合数的计算

组合数公式 Crn=n!r!×(n−r)!Cnr=n!r!×(n−r)!方法一——重数计算法 我们采用这个方法就要计算出每一个素数在n!、r!、(n−r)!n!、r!、(n−r)!出现的个数。 我们直接给出公式 一个素数pp在n!n!中出现的个数是n/p+n/p2+n/p3…n/p+n/p...

2018-03-28 20:49:15

阅读数:173

评论数:0

组合数学——组合数初步

组合数 组合的意义: 从n个物品中随意取出r个物品(都是不可重复的)的方案数()。记作CrnCnr。 计算公式是Crn=n!r!×(n−r)!Cnr=n!r!×(n−r)! 一些组合数的基本公式 Crn=Cn−rnCnr=Cnn−r Crn=Crn−1+Cr−1n−1Cnr=Cn−1r+...

2018-03-28 20:24:54

阅读数:117

评论数:0

向量

2018.3.25英才班数学老师授课 向量专题 向量乘 点积 a→⋅b→=|a→||b→|cosθa→⋅b→=|a→||b→|cos⁡θ\overrightarrow a \cdot \overrightarrow b=|\overrightarrow a||\overrighta...

2018-03-25 10:50:11

阅读数:39

评论数:0

矩阵

2018.3.25英才班数学老师授课 矩阵专题 行列式 三阶行列式 多阶行列式 矩阵 矩阵数乘 矩阵乘法 秩 逆矩阵 求逆矩阵 矩阵的幂 举例 求解AX=B 2018.3.25英才班数学老师授课 矩阵专题 行列式 行列式代表一个运算结果和运算过程。 ...

2018-03-25 10:31:04

阅读数:108

评论数:0

复数——概念和代数运算

复数的引入 追根求源,最初是为了求解没有实数根的二次方程。例如求解 x2+1=0x2+1=0x^2+1=0 这个由实数组成的方程,显然没有实数根。 所以复数集可以看成实数集合的一个自然扩充。 首先引入一个“新数”iii。使它满足 i2=−1i2=−1i^2=-1 也就是说iii是x2...

2018-03-25 08:42:56

阅读数:9021

评论数:2

AHOI2001 HLOJ419 质数和分解

题面 题目描述   任何大于 1 的自然数n都可以写成若干个大于等于2且小于等于n的质数之和表达式(包括只有一个数构成的和表达式的情况),并且可能有不止一种质数和的形式。 例如,9 的质数和表达式就有四种本质不同的形式: 9=2+5+2=2+3+2+2=3+3+3=2+7。   这里所谓...

2018-03-07 18:31:13

阅读数:85

评论数:0

组合数学——容斥原理和错位排列

真的,学了组合数学你会克服公式恐惧症0.0深有体会…… 容斥原理 设A1,A2,…,AnA1,A2,…,AnA_1,A_2,…,A_n为有限集合,用|Ai||Ai||A_i|表示集合AiAiA_i中的元素个数那么有这样的结论: |A1∪A2∪…∪An|=∑i=1n|Ai|−∑1≤i&...

2018-02-27 18:38:51

阅读数:428

评论数:0

组合数学——计数原理和计数公式

加法原理和乘法原理 加法原理是分类,乘法原理是分步。这个不用多解释了。 无重复的排列组合 排列 从nnn个不同元素中取m(m≤n)m(m≤n)m(m\leq n)个不同的元素,按照一定的顺序排成一列,叫做从nnn个不同元素取出的一个排列。 这个排列中没有重复元素,所以叫无重复的排...

2018-02-26 19:30:25

阅读数:343

评论数:0

《算法导论》学习笔记——扩展欧几里得原理

扩展欧几里得算法的原理 扩展欧几里得算法即欧几里得算法的一个变形。我们先来看《算法导论》上的一段伪代码。 EXTENDED-EUCLID if b==0 return(a,1,0) else(d_,x_,y_)=EXTENDED-EUCLID(b,a mod b) (d,x,y)=(d_,...

2018-02-05 13:26:13

阅读数:109

评论数:0

《算法导论》学习笔记——如何证明有无穷多个素数

证明的定理 在自然数集合中,素数有无穷多个。 证明 假设我们已知这么几个素数p1,p2,p3……pn'>p1,p2,p3……pnp1,p2,p3……pnp_1,p_2,p_3……p_n,我们需要证明的是已知这些素数能推出第n+1'>n+...

2018-02-05 12:34:05

阅读数:137

评论数:0

《算法导论》学习笔记——GCD定理的证明

GCD定理 GCD定理是欧几里得算法的灵魂。欧几里得算法就是我们以前说的“辗转相除法”。 GCD定理: gcd(a,b)=gcd(b,a%b)'>gcd(a,b)=gcd(b,a%b)gcd(a,b)=gcd(b,a%b)gcd(a,b)=gcd(b,a\%b) ...

2018-02-04 13:43:10

阅读数:103

评论数:0

《算法导论》学习笔记——裴蜀等式及其扩展的证明

裴蜀等式及其扩展裴蜀等式是exgcdexgcd的骨髓,是建立在gcdgcd,它保证了exgcdexgcd的有解性。 裴蜀等式 存在让ax+by=gcd(a,b)ax+by=gcd(a,b)的x,yx,y; 扩展 gcd(a,b)gcd(a,b)是{ax+by:x,y∈Z}\{ax+by:x...

2017-12-28 08:02:46

阅读数:236

评论数:0

数论——Baby Step Giant Step大步小步算法

bsgs算法 Baby Step Giant Step算法,简称BSGS算法,也称为大步小步算法. 解决对象 离散对数:当x≡Gk(modm)x≡Gk(modm)x\equiv G^k\pmod m时,logG(x)≡k(modϕ(m))logG(x)≡k(modϕ(m))log_G(x...

2017-12-19 19:42:42

阅读数:522

评论数:0

数论——素数

判定素数穷举法判定bool check(int k) { if(k==0||k==1)return false; for(int i=2;i<=sqrt(k);i++) if(k%i==0) return false; return true; }埃氏...

2017-12-16 19:08:58

阅读数:152

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭