机器学习笔记7——张量与数据类型

本文介绍了如何在PyTorch中创建、操作张量,如torch.rand、torch.zeros、torch.ones和torch.tensor,展示了数据类型转换、shape查看以及张量视图调整。重点讲解了数据类型如float32、int32等的使用和转换方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

张量(Tensor)

  • Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵,张量类似于NumPy的ndarrays,张量可以在GPU上使用以加速计算。
  • 构造一个随机初始化的矩阵: torch.rand;
    全 0 矩阵: torch.zeros;
    全 0 矩阵: torch.ones;
    直接从数据构造张量: torch.tensor;

• 32位浮点型:torch.float32
• 64位浮点型:torch.float64
• 32位整型: torch.int32
• 16位整型: torch.int16
• 64位整型: torch.int64
默认的数据类型为:float32,int64
在这里插入图片描述

.size()和.shape()都可以查看数据的形状
在这里插入图片描述
张量的数据类型主要分为三个部分:data、grad(计算梯度)、grad_fn函数
在这里插入图片描述

在这里插入图片描述

数据类型的转换

• Numpy转化为Tensor: torch.from_numpy(numpy矩阵)
• Tensor转化为numpy: Tensor矩阵.numpy()
在这里插入图片描述

  • 调整张量的大小/形状,可以使用torch.view
  • 单个元素张量,使用.item() 转换为python数据

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值