张量(Tensor)
- Pytorch最基本的操作对象是Tensor(张量),它表示一个多维矩阵,张量类似于NumPy的ndarrays,张量可以在GPU上使用以加速计算。
- 构造一个随机初始化的矩阵: torch.rand;
全 0 矩阵: torch.zeros;
全 0 矩阵: torch.ones;
直接从数据构造张量: torch.tensor;
• 32位浮点型:torch.float32
• 64位浮点型:torch.float64
• 32位整型: torch.int32
• 16位整型: torch.int16
• 64位整型: torch.int64
默认的数据类型为:float32,int64

.size()和.shape()都可以查看数据的形状

张量的数据类型主要分为三个部分:data、grad(计算梯度)、grad_fn函数


数据类型的转换
• Numpy转化为Tensor: torch.from_numpy(numpy矩阵)
• Tensor转化为numpy: Tensor矩阵.numpy()

- 调整张量的大小/形状,可以使用torch.view
- 单个元素张量,使用.item() 转换为python数据

本文介绍了如何在PyTorch中创建、操作张量,如torch.rand、torch.zeros、torch.ones和torch.tensor,展示了数据类型转换、shape查看以及张量视图调整。重点讲解了数据类型如float32、int32等的使用和转换方法。
1226

被折叠的 条评论
为什么被折叠?



