在YOLO算法中,bx、by、bw和bh与tx、ty、tw和th是预测边界框时使用的两组不同的参数,它们之间有直接的转换关系。
- bx, by: 代表预测边界框中心点的x和y坐标。它们是相对于特征图网格单元的位置,并且通过sigmoid函数处理以确保值在0到1之间,即在网格单元的范围内。
- bw, bh: 代表预测边界框的宽度和高度。它们是通过预测值tw和th经过指数函数处理后,乘以锚框(anchor box)的宽度(pw)和高度(ph)得到的。这样,bw和bh可以是任意正数,表示边界框相对于图像的尺寸。
- tx, ty: 是预测的坐标偏移值,用于调整边界框中心点的位置。这些值通过sigmoid函数处理,以确保预测的中心点落在相应的网格单元内。
- tw, th: 是尺度缩放因子,用于调整边界框的宽度和高度。这些值通过指数函数处理,以允许边界框的尺寸在正数范围内变化。
具体转换关系如下:

其中,σ:表示sigmoid函数,cx和cy是网格单元左上角的坐标, pw和ph是锚框的宽度和高度。
网络实际学习的目标是tx、ty、tw、th这四个偏移量(offsets),通过这些偏移量可以求得真正需要的bx、by、bw、bh四个坐标。这种方法使得网络输出没有约束,便于学习过程。通过学习偏移量,可以对网络原始给定的锚框坐标进行线性回归微调,使其逐渐靠近真实边界框(groundtruth)。
7205

被折叠的 条评论
为什么被折叠?



