Neural Architectures for Named Entity Recognition
这是本人读论文的笔记,其余论文部分在网上都有,本人仅对自己未知的知识进行记录!
全文翻译:Neural Architectures for Named Entity Recognition翻译_nopSled的博客-CSDN博客
近/规约解析( shift-reduce)
Shift Reduce解析器尝试以类似于自下而上的解析方式进行解析的构造,即,从左(下)到根(上)构造解析树。移位减少解析器的更通用形式是LR解析器。
该解析器需要一些数据结构,即
- 用于存储输入字符串的输入缓冲区。
- 用于存储和访问生产规则的堆栈。
Transition-based parsing(基于贪心决策动作的拼接句法树)
句法分析
1.概述
句法分析也是自然语言处理中的基础性工作,它分析句子的句法结构(主谓宾结构)和词汇间的依存关系(并列,从属等)。通过句法分析,可以为语义分析,情感倾向,观点抽取等NLP应用场景打下坚实的基础。
随着深度学习在NLP中的使用,特别是本身携带句法关系的LSTM模型的应用,句法分析已经变得不是那么必要了。但是,在句法结构十分复杂的长语句,以及标注样本较少的情况下,句法分析依然可以发挥出很大的作用。因此研究句法分析依然是很有必要的。
2.句法分析分类
句法分析分为两类,一类是分析句子的主谓宾 定状补的句法结构。另一类是分析词汇间的依存关系,如并列 从属 比较 递进等。下面详细讲解。
第一类为主谓宾定状补句法结构分析

第二类为句法依赖关系分析

简而言之,就是用栈和队列去分析语法。
RNN vs CNN
why not stand network?
- 输入长度不一致
- 不共享特征
1.RNN forward propagation


2.RNN backward propagation

LSTM vs GRU
1.GRU
GRU是LSTM网络的一种效果很好的变体,它较LSTM网络的结构更加简单,而且效果也很好,因此也是当前非常流形的一种网络。GRU既然是LSTM的变体,因此也是可以解决RNN网络中的长依赖问题。
- GRU改变了RNN的隐藏层,使其更好地捕捉深层关系,解决了梯度消失问题
在LSTM中引入了三个门函数:输入门、遗忘门和输出门来控制输入值、记忆值和输出值。而在GRU模型中只有两个门:分别是更新门和重置门。具体结构如下图所示:




2.LSTM
长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。



submit:
更新门和重置门: LSTM peephole connection之后就是GRU

更新门和重置门和遗忘门:


CRF Tagging Models
一个非常简单但有效的有效标记模型是使用hth_tht作为特征来为每个输出yty_tyt做出独立的标注决策(Ling et al。,2015b)。尽管单独的模型在诸如词性标注(POS)之类的简单问题上取得了成功,但是当输出标签之间存在强烈的依赖关系时,其独立的分类决策是有限的。命名实体识别(NER)就是这一类的任务,因为用于表示一种可解释的标签序列的“语法”强加了几个硬约束(例如,I-PER不能遵循B-LOC;详见§2.4),这是不可能用独立假设进行建模的。



一文了解CRF:一文理解条件随机场CRF - 知乎
LSTM-CRF
模型图


327

被折叠的 条评论
为什么被折叠?



