Visible Lattice Points--Poj 3090

题目描述:

一个N*N的方格,左下角坐标为(0,0),右上角为(N,N)。除了(0,0)之外任意的(x,y)上都有一个钉子,问你站在(0,0)最多看到多少个钉子。(假设人和钉子一样高)

分析:

首先,坐标除了(1,0)和(0,1)这两个钉子可以看到外,其他的任意(x,y)上的钉子能被看到,当且仅当x,y!=0&&gcd(x,y)=1;也就是x,y互质。

这道题给的数据范围,N<=2000,所以我就很自然的想到了一个非常蠢的暴力:枚举每一个点,然后求gcd判断是不是互质。

复杂度为O(N^2 log N)在当前数据范围下是完全可以过的,但毕竟算法太蠢。

在本校oj上有一道相同的题,不过数据范围加强了,N<=40000,那刚才的算法就必须淘汰了。

我们观察样例给的图像可以发现,如果去除掉(1,1)这个点的话,剩下的能被看到的钉子是关于y=x对称的,所以我们先考虑一半。设1<=x<=y,2<=y<=N,那么对于每一个y,能看到的钉子数就是与y互质的数的个数,也就是φ(y),很显然,答案就是sigma(φ(y))。

那么我们现在要做的就是快速求出2~N之间所有数的欧拉函数。之前提到过,如果把一个数质因数分解,N=p1^c1*p2^c2*p3^c3……pm^cm,φ(n)=N*(p1-1)/p1*(p2-1)/p2……。用之前的那个Eratosthenes筛法,可以递推出答案。复杂度为O(NlogN),可以A掉。

int phi[maxn],n;
for(int i=2;i<=n;i++) phi[i]=i;
for(int i=2;i<=n;i++)
	if(phi[i]==i)
		for(int j=i;j<=n;j+=i)
			phi[j]=phi[j]*(i-1)/i;

但是有了之前筛素数的经验,我们考虑能不能继续优化这个算法呢?

根据之前欧拉函数的两个性质:

1.p|n,p^2|n,φ(n)=φ(n/p)*p;

2.p|n,p^2不整除n,φ(n)=φ(n/p)*(p-1);

由此我们能推过φ(n/p)递推出φ(n);

int v[maxn],p[maxn],phi[maxn],m=0;
memset(v,0,sizeof(v));
for(int i=2;i<=n;i++){
	if(!v[i])
		v[i]=i,phi[i]=i-1,p[++m]=i;
	for(int j=1;j<=m;j++){
		if(p[j]>v[i]||p[j]>n/i) break;
		v[i*p[j]]=p[j];
		phi[j]=phi[i]
		*(i%p[j] ? (p[j]-1) : p[j]);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值