百度飞浆图像分割课程 笔记14:全景分割 Panoptic-DeepLab [CVPR 2019]

bottom-up:不需要先做检测

Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation

论文链接:https://arxiv.org/pdf/1911.10194.pdf

Panoptic-DeepLab框架
在这里插入图片描述

  • 采用双ASPP双解码器结构
  • 预测三个输出,语义分割,实例中心和实例回归
    在这里插入图片描述

Framework:
1. Encoder
ImageNet-Pretrained CNN(with dilated Conv:使得最后两层的尺度保持为1/16)
在这里插入图片描述

2. Separate ASPP and Decoder

  • 一个ASPP提取语义多尺度context,不同的上下文
  • 一个ASPP提取实例多尺度context
    在这里插入图片描述

3. 双decoder
两个ASPP的输出,分别于backbone两个高分辨率的feature做融合。

然后上采样,得到更高分辨率的feature map,为了后面做密集预测。如果分辨率比较大,做密集预测结果是比较好的。(比如要得到100×100的mask,如果是50×50的mask,只需要上采样2倍,但是如果是10×10,就需要上采样10倍,直觉是,更少的feature map,10×10本身的信息量就很好了,得到更高的feature map是比较困难的,结果也会比较差。所以先提前得到一个较大的feature map)
在这里插入图片描述
4. Semantic segmentation:
- 用5×5卷积和1×1卷积,得到分割结果(H×W×Num_classes)
在这里插入图片描述

5. Instance segmentation head:
在这里插入图片描述
①predicting instance center point:实例中心预测,预测每个点是不是实例中心的概率。
H×W×128 通过 5×5卷积,得到H×W×32的,再通过1×1卷积,得到H×W×1的feature map,对于任何点只有一个值,范围为0-1,为概率值,代表该点为实例中心的概率

②predicting the offsets to its corresponding mass center for every foreground pixel:实例中心回归。
有了实例中心,怎么得到实例。预测每个点到实例中心的偏移量是多少。H×W×128 通过 5×5卷积,得到H×W×32的,再通过1×1卷积,得到2通道的(Δx,Δy)

  • 训练:实例中心编码为标准差为8个pixel的二维高斯概率分布,MSE loss;(因为如果只用一个点,很难预测。二维高斯map会更好学习一点)

  • 测试:前景像素被分配到最近的质心点。
    在这里插入图片描述![
    在这里插入图片描述

    预测类别怎么知道
    实例类别由语义分割结果知道。(语义分割结果不知道属于哪个实例,但是知道实例的类别)
    在这里插入图片描述

6. 融合语义分割和实例分割,得到最终的分割结果

扩展:关于实例分割和全景分割的paper:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值