bottom-up:不需要先做检测
Panoptic-DeepLab: A Simple, Strong, and Fast Baseline for Bottom-Up Panoptic Segmentation
论文链接:https://arxiv.org/pdf/1911.10194.pdf
Panoptic-DeepLab框架

- 采用双ASPP双解码器结构
- 预测三个输出,语义分割,实例中心和实例回归

Framework:
1. Encoder
ImageNet-Pretrained CNN(with dilated Conv:使得最后两层的尺度保持为1/16)

2. Separate ASPP and Decoder
- 一个ASPP提取语义多尺度context,不同的上下文
- 一个ASPP提取实例多尺度context

3. 双decoder
两个ASPP的输出,分别于backbone两个高分辨率的feature做融合。
然后上采样,得到更高分辨率的feature map,为了后面做密集预测。如果分辨率比较大,做密集预测结果是比较好的。(比如要得到100×100的mask,如果是50×50的mask,只需要上采样2倍,但是如果是10×10,就需要上采样10倍,直觉是,更少的feature map,10×10本身的信息量就很好了,得到更高的feature map是比较困难的,结果也会比较差。所以先提前得到一个较大的feature map)

4. Semantic segmentation:
- 用5×5卷积和1×1卷积,得到分割结果(H×W×Num_classes)

5. Instance segmentation head:

①predicting instance center point:实例中心预测,预测每个点是不是实例中心的概率。
H×W×128 通过 5×5卷积,得到H×W×32的,再通过1×1卷积,得到H×W×1的feature map,对于任何点只有一个值,范围为0-1,为概率值,代表该点为实例中心的概率
②predicting the offsets to its corresponding mass center for every foreground pixel:实例中心回归。
有了实例中心,怎么得到实例。预测每个点到实例中心的偏移量是多少。H×W×128 通过 5×5卷积,得到H×W×32的,再通过1×1卷积,得到2通道的(Δx,Δy)
-
训练:实例中心编码为标准差为8个pixel的二维高斯概率分布,MSE loss;(因为如果只用一个点,很难预测。二维高斯map会更好学习一点)
-
测试:前景像素被分配到最近的质心点。


预测类别怎么知道?
实例类别由语义分割结果知道。(语义分割结果不知道属于哪个实例,但是知道实例的类别)

6. 融合语义分割和实例分割,得到最终的分割结果
扩展:关于实例分割和全景分割的paper:

604

被折叠的 条评论
为什么被折叠?



