原码、反码、 补码
符号位
数字的二进制位的最高位是符号位,一般不代表数值,而是用来代表正负符号位,0为正数,1为负数。对于最高位,指的并不一定就是第32位(从右往左),而在于数的范围
在0111 1111 - 1111 1111(-127 —— +127)范围内,最高位也就是第8位表示符号位(正负)
在0111 1111 1111 1111 -1111 1111 1111 1111(-32,767—— +32,767),最高位也就是第16位是符号位(正负)
在0111 1111 1111 1111 1111 1111 - 1111 1111 1111 1111 1111 1111(-8,388,607—— +8,388,607)最高位也就是第24位代表符号位
在0111 1111 1111 1111 1111 1111 1111 1111 - 1111 1111 1111 1111 1111 1111 1111 1111(-2,147,483,647——+2,147,483,647)最高位也就是第32位代表符号位
一. 机器数和真值
在学习原码, 反码和补码之前, 我们需要先了解机器数和真值的概念.
1、机器数(二进制表示)
一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.
比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是00000011。如果是 -3 ,就是 10000011
那么,这里的 00000011 和 10000011 就是机器数。
2、真值
因为第一位是符号位,所以机器数的形式值就不等于真正的数值。例如上面的有符号数 10000011,其最高位1代表负,其真正数值是 -3 而不是形式值131(10000011转换成十进制等于131)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。
例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –000 0001 = –1
1. 原码——(把数值转换为二进制的形式就是原码)
正数的原码是本身(符号位为0)
负数的原码就是符号位为1
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+0]原 = 0000 0000
[-0]原 = 1000 0000
[+1]原 = 0000 0001
[-1]原 = 1000 0001
在上面的8位二进制中,由于第一位表示了符号位,因此数值的范围在7位二进制[1111 1111 , 0111 1111] [-127 , 127],最高位也就是第8位代表符号位(正负)
原码的问题1:在上面的8位二进制中,由于第一位表示了符号位,因此正负数的区别就是最高位是否为0或1,但同时也出现了一个问题,对于0来说,会有两个8位二进制都是能表示0 (+0,-0),虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.
原码的问题2:由于最高位的表示符号位,如果用原码表示, 让符号位也参与计算, 显然对于减法来说, 结果是不正确的.这也就是为何计算机内部不使用原码表示一个数.,但对于正数原码是可以计算的。
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [00000001]原 + [10000001]原 = [10000010]原 = -2
1 + 1 = 1 + (+1) = [00000001]原 + [00000001]原 = [00000010]原 = 2
我们知道, 根据运算法则减去一个正数等于加上一个负数, 即: 1-1 = 1 + (-1) = 0 , 因此机器其实可以只有加法而没有减法, 并且这样计算机运算的设计就可以变得更加简单了.
因此,为了解决原码做减法的问题, 出现了反码:
2. 反码
反码的表示方法是:
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.
计算十进制的表达式: 1-1=0
1 - 1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原= [0000 0001]反 + [1111 1110]反 = [1111 1111]反 = [1000 0000]原 = -0
发现用反码计算减法, 结果的真值部分是正确的. 而唯一的问题其实就出现在"0"这个特殊的数值上. 虽然人们理解上+0和-0是一样的, 但是0带符号是没有任何意义的. 而且会有[0000 0000]原和[1000 0000]原两个编码表示0.,因此反码只是解决了原码对于负数计算的问题,对于+0,-0及其编码问题依然没有解决,而补码的出现,才解决了0的符号以及两个编码的问题:
3. 补码
补码的表示方法是:
正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数, 补码表示方式也是人脑无法直观看出其数值的. 通常也需要转换成原码在计算其数值.
计算十进制的表达式: 1-1=0
1-1 = 1 + (-1) = [0000 0001]原 + [1000 0001]原 = [0000 0001]补 + [1111 1111]补 = [0000 0000]补=[0000 0000]原
这样0用[0000 0000]表示, 而以前出现问题的-0则不存在了.而且可以用[1000 0000]表示-128:
(-1) + (-127) = [1000 0001]原 + [1111 1111]原 = [1111 1111]补 + [1000 0001]补 = [1000 0000]补
重点:对于用反码或补码计算出来的数值,人脑是无法直观的看出来它的数值,还需要转回原码才能看的出
-1-127的结果应该是-128, 在用补码运算的结果中, [1000 0000]补 就是-128. 但是注意因为实际上是使用以前的-0的补码来表示-128, 所以-128并没有原码和反码表示.(对-128的补码表示[1000 0000]补算出来的原码是[0000 0000]原, 这是不正确的)
使用补码, 不仅仅修复了0的符号以及存在两个编码的问题, 而且还能够多表示一个最低数. 这就是为什么8位二进制, 使用原码或反码表示的范围为[-127, +127], 而使用补码表示的范围为[-128, 127].
因为机器使用补码, 所以对于编程中常用到的32位int类型, 可以表示范围是: [-231, 231-1] 因为第一位表示的是符号位.而使用补码表示时又可以多保存一个最小值.
小结:从始至终,符号位都是参与计算的,对于原码,包含符号位的负数计算得到的值是不正确的
也没有解决+0,-0及编码问题,对于反码,包含符号位的正负数计算是正确的,但依然没解决+0,-0及编码问题,对于补码,最终才解决了以上两个问题