OpenAI API 中文文档 - 介绍

OpenAIAPI提供一系列模型用于自然语言和代码处理任务,如内容生成、语义搜索和分类。用户可微调模型以适应特定需求。GPT-4和GPT-3.5-Turbo是其中的代表性模型,后者优化了对话格式。理解令牌化对使用API至关重要,且需注意模型的最大上下文长度限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍

概述

OpenAI API 几乎可以应用于任何涉及理解或生成自然语言、代码或图像的任务。我们提供一系列具有不同功率水平的型号,适用于不同的任务,并能够微调您自己的定制模型。这些模型可用于从内容生成到语义搜索和分类的所有内容。


关键概念

我们建议完成快速入门教程,通过动手的交互式示例熟悉关键概念。

提示

设计提示本质上是“编程”模型的方式,通常是通过提供一些说明或一些示例。这与大多数其他 NLP 服务不同,后者是为单个任务设计的,例如情绪分类或命名实体识别。相反,完成和聊天完成终结点几乎可用于任何任务,包括内容或代码生成、摘要、扩展、对话、创意写作、样式迁移等。

令 牌

我们的模型通过将文本分解为标记来理解和处理文本。标记可以是单词,也可以只是字符块。例如,单词“汉堡包”被分解为标记“ham”,“bur”和“ger”,而像“梨”这样的简短而常见的单词是单个令牌。许多标记以空格开头,例如“hello”和“bye”。

给定 API 请求中处理的令牌数量取决于输入和输出的长度。根据粗略的经验法则,对于英文文本,1 个标记大约是 4 个字符或 0.75 个单词。要记住的一个限制是,文本提示和生成的完成组合不得超过模型的最大上下文长度(对于大多数模型,这是 2048 个标记,或大约 1500 个单词)。查看我们的分词器工具,详细了解文本如何转换为分词

模型

该 API 由一组具有不同功能和价位的模型提供支持。GPT-4 是我们最新、功能最强大的型号。GPT-3.5-Turbo 是支持 ChatGPT 的模型,并针对对话格式进行了优化。要了解有关这些模型以及我们提供的其他功能的更多信息,请访问我们的模型文档


后续步骤

  • 在开始构建应用程序时,请记住我们的使用策略
  • 探索我们的示例库以获取灵感。
  • 跳转到我们的指南之一,开始构建。

指南

<think>好的,我现在需要帮助用户找到OpenAI API的官方文档。首先,我得回想一下之前提供的引用内容,看看有没有相关的链接或者信息。 引用[1]提到了Authorization头的格式,其中使用了Bearer token,这可能和API的认证有关,但并没有直接给出文档链接。引用[2]详细说明了API参数,比如模型ID和prompt的使用,这里可能来自官方文档的某个部分,但同样没有给出具体的URL。引用[3]解释了令牌的机制,这可能涉及API如何处理输入文本,但也没有文档链接。 用户明确需要官方文档,所以我需要确定正确的官方网站。通常,OpenAI的官方域名是openai.com,所以API文档应该在他们的官方网站上。常见的API文档路径可能是类似https://platform.openai.com/docs/这样的子目录。我需要确认这个路径是否正确,可能需要通过记忆或者搜索来验证,但根据常见情况,这个路径应该是正确的。 接下来,我需要确保提供的链接是用户可访问的,并且是最新的。由于OpenAI有时会更新他们的文档结构,可能需要检查是否有变动。不过,根据现有的信息,platform.openai.com/docs/应该还是有效的。此外,可能还需要提到API参考和指南的区别,帮助用户找到他们需要的具体内容,比如认证方法、模型列表或使用示例。 另外,用户可能需要了解如何获取API密钥,这也是使用API的前提。引用[1]中提到了Bearer token的使用,所以应该指导用户到OpenAI的平台上生成API密钥,并注意保密。同时,提醒用户查阅最新的模型列表和参数说明,如引用[2]中的模型ID和prompt参数,这些内容在官方文档中会有详细说明。 最后,确保回答结构清晰,分点说明,并包含相关引用。同时,根据用户的要求生成相关问题,这些问题应该围绕API的使用、认证、参数和令牌处理等方面展开。</think>以下是OpenAI API官方文档的核心信息整理: ### OpenAI API官方文档路径 OpenAI API官方文档可通过以下地址访问: $$https://platform.openai.com/docs/$$ ### 关键内容模块 1. **快速入门指南** 包含API接入基础步骤,演示如何发送首个API请求[^2] 2. **认证方式** 使用Bearer token进行身份验证,格式为: ```http Authorization: Bearer OPENAI_API_KEY ``` 需注意Bearer后保留空格[^1] 3. **模型列表** 提供可用模型的完整清单(如text-davinci-003等),包含模型特性与适用场景说明 4. **令牌系统** 解释文本处理机制: - 文本被分解为子词单元(token) - 中英文有不同的分词策略 - 示例:"汉堡包"→["ham","bur","ger"][^3] ### 注意事项 建议通过官方Playground先进行API测试,再开始代码开发。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值