【离散化】USACO 1.2 挤牛奶

Description

三个农民每天清晨5点起床,然后去牛棚给3头牛挤奶。第一个农民在300时刻(从5点开始计时,秒为单位)给他的牛挤奶,一直到1000时刻。第二个农民在700时刻开始,在 1200时刻结束。第三个农民在1500时刻开始2100时刻结束。期间最长的至少有一个农民在挤奶的连续时间为900秒(从300时刻到1200时刻),而最长的无人挤奶的连续时间(从挤奶开始一直到挤奶结束)为300秒(从1200时刻到1500时刻)。
  你的任务是编一个程序,读入一个有N个农民(1 <= N <= 5000)挤N头牛的工作时间列表,计算以下两点(均以秒为单位):
• 最长至少有一人在挤奶的时间段。
• 最长的无人挤奶的时间段。

Input

Line 1: 一个整数N。
Lines 2…N+1: 每行两个小于1000000的非负整数,表示一个农民的开始时刻与结束时刻。

Output

一行,两个整数,即题目所要求的两个答案。

Sample Input

3
300 1000
700 1200
1500 2100

Sample Output

900 300

解题思路


离散化
基本思想:先把所有端点坐标从小到大排序,将坐标值与其序号一一对应。这样便可以将原先的坐标值转化为序号后,对其应用前一种算法,再将最后结果转化回来得解。该方法对于线段数相对较少的情况有效,时间复杂度(n^2)。
在这里插入图片描述

在这里插入图片描述


离散化之后,计算过程中加入对最长挤奶时间和最长空白时间


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
struct DT{
	int x,y;
}a[6000];
long long n,b[10020],ans,ans2,sum,sum2;
int main(){
	scanf("%lld",&n);
	for(int i=1;i<=n;i++){
		scanf("%lld%lld",&a[i].x,&a[i].y);
		b[i]=a[i].x,b[i+n]=a[i].y;
	}
	sort(b+1,b+2*n+1);
	for(int i=2;i<=2*n;i++){
		int k=0;
		for(int j=1;j<=n;j++){
	    	if(b[i]>a[j].x&&b[i]<=a[j].y){
	    		k=1;
	    		sum+=b[i]-b[i-1];
	    		ans=max(ans,sum);
	    		sum2=0;
	    		break;
	    	}
		}
		if(!k){
	    		sum2+=b[i]-b[i-1];
	    		ans2=max(ans2,sum2);
	    		sum=0;
	    	}
	}
	printf("%lld %lld",ans,ans2);
}
©️2020 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页