Broyden类算法

本文深入探讨了拟牛顿法中的BFGS和DFP算法,以及它们之间的Broyden类算法。通过数学推导展示了Broyden类算法如何结合BFGS和DFP算法,并通过参数θk来调整两者的影响。还讨论了算法的正定性保持条件以及搜索方向的特性。最后,介绍了算法的迭代步骤和应用情况。
摘要由CSDN通过智能技术生成

拟牛顿法
BFGS算法
DFP算法

Broyden类算法

Broyden类算法是BFGS和DFP校正的凸组合产生的一类校正族
B k + 1 θ = θ k B k + 1 D F P + ( 1 − θ k ) B k + 1 B F G S = B k + 1 B F G S + θ k ( B k + 1 D F P − B k + 1 B F G S ) = B k − B k s k s k T B k s k T B k s k + y k y k T y k T s k + θ k ( ( I − s k y k T y k T s k ) T B k ( I − s k y k T y k T s k ) + y k y k T y k T s k − B k + B k s k s k T B k s k T B k s k − y k y k T y k T s k ) = B k − B k s k s k T B k s k T B k s k + y k y k T y k T s k + θ k ( B k − y k s k T B k y k T s k − B k s k y k T y k T s k + y k s k T B k s k y k T ( y k T s k ) 2 + y k y k T y k T s k − B k + B k s k s k T B k s k T B k s k − y k y k T y k T s k ) = B k − B k s k s k T B k s k T B k s k + y k y k T y k T s k + θ k ( − y k s k T B k y k T s k − B k s k y k T y k T s k + y k s k T B k s k y k T ( y k T s k ) 2 + B k s k s k T B k s k T B k s k ) = B k − B k s k s k T B k s k T B k s k + y k y k T y k T s k + θ k ( s k T B k s k ) ( y k y k T s k − B k s k s k T B k s k ) ( y k y k T s k − B k s k s k T B k s k ) T \begin{aligned} \mathbf{B}_{k+1}^{\theta}&=\theta_k\mathbf{B}_{k+1}^{DFP}+\left(1-\theta_k\right)\mathbf{B}_{k+1}^{BFGS}\\ &=\mathbf{B}_{k+1}^{BFGS}+\theta_k\left(\mathbf{B}_{k+1}^{DFP}-\mathbf{B}_{k+1}^{BFGS}\right)\\ &=\mathbf{B}_k-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\theta_k\left(\left(\mathbf{I}-\frac{\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)^T\mathbf{B}_{k}\left(\mathbf{I}-\frac{\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}-\mathbf{B}_k+\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}-\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)\\ &=\mathbf{B}_k-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\theta_k\left(\mathbf{B}_k-\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\left(\mathbf{y}_k^T\mathbf{s}_k\right)^2}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}-\mathbf{B}_k+\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}-\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}\right)\\ &=\mathbf{B}_k-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\theta_k\left(-\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k\mathbf{y}_k^T}{\left(\mathbf{y}_k^T\mathbf{s}_k\right)^2}+\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}\right)\\ &=\mathbf{B}_k-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\theta_k\left(\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k\right)\left(\frac{\mathbf{y}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}\right)\left(\frac{\mathbf{y}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}\right)^T \end{aligned} Bk+1θ=θkBk+1DFP+(1θk)Bk+1BFGS=Bk+1BFGS+θk(Bk+1DFPBk+1BFGS)=BkskTBkskBkskskTBk+ykTskykykT+θk((IykTskskykT)TBk(IykTskskykT)+ykTskykykTBk+skTBkskBkskskTBkykTskykykT)=BkskTBkskBkskskTBk+ykTskykykT+θk(BkykTskykskTBkykTskBkskykT+(ykTsk)2ykskTBkskykT+ykTskykykTBk+skTBkskBkskskTBkykTskykykT)=BkskTBkskBkskskTBk+ykTskykykT+θk(ykTskykskTBkykTskBkskykT+(ykTsk)2ykskTBkskykT+skTBkskBkskskTBk)=BkskTBkskBkskskTBk+ykTskykykT+θk(skTBksk)(ykTskykskTBkskBksk)(ykTskykskTBkskBksk)T

u k = s k T B k s k ( y k y k T s k − B k s k s k T B k s k ) \mathbf{u}_k=\sqrt{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}\left(\frac{\mathbf{y}_k}{\mathbf{y}_k^T\mathbf{s}_k}-\frac{\mathbf{B}_k\mathbf{s}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}\right) uk=skTBksk (ykTskykskTBkskBksk)
B k + 1 θ = θ k B k + 1 D F P + ( 1 − θ k ) B k + 1 B F G S = B k − B k s k s k T B k s k T B k s k + y k y k T y k T s k + θ k u k u k T \begin{aligned} \mathbf{B}_{k+1}^{\theta}&=\theta_k\mathbf{B}_{k+1}^{DFP}+\left(1-\theta_k\right)\mathbf{B}_{k+1}^{BFGS}\\ &=\mathbf{B}_k-\frac{\mathbf{B}_k\mathbf{s}_k\mathbf{s}_k^T\mathbf{B}_k}{\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k}+\frac{\mathbf{y}_k\mathbf{y}_k^T}{\mathbf{y}_k^T\mathbf{s}_k}+\theta_k\mathbf{u}_k\mathbf{u}_k^T \end{aligned} Bk+1θ=θkBk+1DFP+(1θk)Bk+1BFGS=BkskTBkskBkskskTBk+ykTskykykT+θkukukT

B \mathbf{B} B换成 H \mathbf{H} H,然后 s \mathbf{s} s y \mathbf{y} y互换

v k = y k T H k y k ( s k s k T y k − H k y k y k T H k y k ) \mathbf{v}_k=\sqrt{\mathbf{y}_k^T\mathbf{H}_k\mathbf{y}_k}\left(\frac{\mathbf{s}_k}{\mathbf{s}_k^T\mathbf{y}_k}-\frac{\mathbf{H}_k\mathbf{y}_k}{\mathbf{y}_k^T\mathbf{H}_k\mathbf{y}_k}\right) vk=ykTHkyk (skTykskykTHkykHkyk)
H k + 1 ϕ = ϕ k H k + 1 B F G S + ( 1 − ϕ k ) H k + 1 D F P = H k − H k y k y k T H k y k T H k y k + s k s k T s k T y k + ϕ k v k v k T \begin{aligned} \mathbf{H}_{k+1}^{\phi}&=\phi_k\mathbf{H}_{k+1}^{BFGS}+\left(1-\phi_k\right)\mathbf{H}_{k+1}^{DFP}\\ &=\mathbf{H}_k-\frac{\mathbf{H}_k\mathbf{y}_k\mathbf{y}_k^T\mathbf{H}_k}{\mathbf{y}_k^T\mathbf{H}_k\mathbf{y}_k}+\frac{\mathbf{s}_k\mathbf{s}_k^T}{\mathbf{s}_k^T\mathbf{y}_k}+\phi_k\mathbf{v}_k\mathbf{v}_k^T \end{aligned} Hk+1ϕ=ϕkHk+1BFGS+(1ϕk)Hk+1DFP=HkykTHkykHkykykTHk+skTykskskT+ϕkvkvkT

可以证明(没证明过)
θ k = 1 − ϕ k 1 − ϕ k ( 1 − μ k ) \theta_k=\frac{1-\phi_k}{1-\phi_k\left(1-\mu_k\right)} θk=1ϕk(1μk)1ϕk
其中
μ k = ( s k T B k s k ) ( y k T H k y k ) ( s k T y k ) 2 \mu_k=\frac{\left(\mathbf{s}_k^T\mathbf{B}_k\mathbf{s}_k\right)\left(\mathbf{y}_k^T\mathbf{H}_k\mathbf{y}_k\right)}{\left(\mathbf{s}_k^T\mathbf{y}_k\right)^2} μk=(skTyk)2(skTBksk)(ykTHkyk)

性质

性质1

用Broyden族算法求解
min ⁡ f ( x ) = 1 2 x T G x + b T x + c \min f\left(\mathbf{x}\right)=\frac{1}{2}\mathbf{x}^T\mathbf{G}\mathbf{x}+\mathbf{b}^T\mathbf{x}+c minf(x)=21xTGx+bTx+c
若初始矩阵 H 0 \mathbf{H}_0 H0是正定的,算法所产生的迭代点是互异的。则
(1)当 y k T s k > 0 \mathbf{y}_k^T\mathbf{s}_k>0 ykTsk>0 ϕ k ≥ 0 \phi_k\ge 0 ϕk0 θ k ≥ 0 \theta_k\ge 0 θk0时,Broyden族校正公式保持正定性
(2)算法所产生的搜索方向 d 0 , ⋯   , d k ( k ≥ n − 1 ) \mathbf{d}_0,\cdots,\mathbf{d}_k\left(k\ge n-1\right) d0,,dk(kn1)满足
(a) d i T G d j = 0 , 0 ≤ i < j ≤ k \mathbf{d}_i^T\mathbf{G}\mathbf{d}_j=0,\quad 0\le i<j\le k diTGdj=0,0i<jk
(b) H k ϕ y i = s i , 0 ≤ i ≤ k − 1 \mathbf{H}_k^\phi\mathbf{y}_i=\mathbf{s}_i,\quad 0\le i\le k-1 Hkϕyi=si,0ik1
证明:
(1)与前面BFGS那里类似
(2)再说吧

H k + 1 = { H k , s k T y k ≤ 0 H k + 1 = H k − H k y k y k T H k y k T B k y k + s k s k T s k T y k + ϕ v k v k T s k T y k > 0 \mathbf{H}_{k+1}=\begin{cases} \mathbf{H}_k,&\mathbf{s}_k^T\mathbf{y}_k\le 0\\ \mathbf{H}_{k+1}=\mathbf{H}_k-\frac{\mathbf{H}_k\mathbf{y}_k\mathbf{y}_k^T\mathbf{H}_k}{\mathbf{y}_k^T\mathbf{B}_k\mathbf{y}_k}+\frac{\mathbf{s}_k\mathbf{s}_k^T}{\mathbf{s}_k^T\mathbf{y}_k}+\phi\mathbf{v}_k\mathbf{v}_k^T&\mathbf{s}_k^T\mathbf{y}_k>0 \end{cases} Hk+1={Hk,Hk+1=HkykTBkykHkykykTHk+skTykskskT+ϕvkvkTskTyk0skTyk>0

步骤

初始化:选择起点 x 0 \mathbf{x}_0 x0,
选择 H 0 \mathbf{H}_0 H0(一般取 ∇ − 2 f ( x 0 ) \nabla^{-2} f\left(\mathbf{x}_0\right) 2f(x0)或者 I \mathbf{I} I )

步骤
1.若 ∥ g k ∥ ≤ ϵ \|\mathbf{g}_k\|\le \epsilon gkϵ,停止,输出 x k \mathbf{x}_k xk
2.计算 d k = − H k g k \mathbf{d}_k=-\mathbf{H}_k\mathbf{g}_k dk=Hkgk
3.求步长 α k \alpha_k αk
4. x k + 1 = x k + α k d k \mathbf{x}_{k+1}=\mathbf{x}_k+\alpha_k\mathbf{d}_k xk+1=xk+αkdk,矫正 H k \mathbf{H}_{k} Hk得到 H k + 1 \mathbf{H}_{k+1} Hk+1
5.k=k+1,转1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值