cz_xuyixuan的博客

当我跨过沉沦的一切,向永恒开战的时候,你是我的军旗。

排序:
默认
按更新时间
按访问量

【CodeForces】CodeForces Round #405 (Div. 1) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**Bear and Different Names 【思路要点】 首先生成NNN个不同的合法名字。 按照如下方式构造一组解: 保证前k−1k−1k-1...

2018-08-20 17:20:31

阅读数:8

评论数:0

【CodeForces】CodeForces Round #503 (Div. 1) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**Elections 【思路要点】 考虑枚举111号党派最终的得票,剩余部分我们可以通过贪心解决: 对于每一个得票数高于111号党派的党派,贪心地改变其代...

2018-08-15 15:30:37

阅读数:51

评论数:0

【CodeForces】CodeForces Round #502 (Div. 1 + Div. 2) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**The Rank 【思路要点】 按照题意模拟。 时间复杂度O(N)O(N)O(N)。 【代码】 #include<b...

2018-08-13 15:33:05

阅读数:35

评论数:0

【CodeForces】CodeForces Round #403 (Div. 1) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**Andryusha and Colored Balloons 【思路要点】 显然答案有下界:Max{di+1}Max{di+1}Max\{d_i+1\},其中did...

2018-08-07 20:51:15

阅读数:64

评论数:0

【CodeForces】CodeForces Round #402 (Div. 1) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**String Game 【思路要点】 显然可以二分答案。 然后判定ppp是否为删减后的ttt的子序列即可。 时间复杂度O(NLogN)O(NLogN)O(N...

2018-08-04 20:01:51

阅读数:80

评论数:0

【CodeForces】CodeForces Round #400 (Div. 1 + Div. 2) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**A Serial Killer 【思路要点】 维护两个字符串模拟。 时间复杂度O(N)O(N)O(N)。 【代码】 #include&...

2018-08-02 18:22:36

阅读数:31

评论数:0

【CodeForces319D】Have You Ever Heard About the Word?

【题目链接】 点击打开链接 【思路要点】 一个重要的性质是:当我们发现当前串中不存在长度为iii的repeating block时,长度为iii的repeating block不会再出现。 证明较为简单:上述命题等价于当前串中不存在长度为2i2i2i的re...

2018-07-01 20:51:17

阅读数:38

评论数:0

【CodeForces850F】Rainbow Balls

【题目链接】 点击打开链接 【思路要点】 考虑枚举最后剩下的一种球是哪一种球。 令sum=∑Ni=1aisum=∑i=1Naisum=\sum_{i=1}^{N}a_i,问题被转化为了今有aiaia_i个黑球和sum−aisum−aisum-a_i个白球,...

2018-06-30 21:24:34

阅读数:31

评论数:0

【CodeForces316G】Good Substrings

【题目链接】 点击打开链接 【思路要点】 建立多串后缀树,依次考虑树上每一条边上代表的字符串是否应该被统计。 不妨设当前考虑的是节点xxx与其父亲fatherfatherfather的连边。 若节点xxx满足子树内存在SSS的结尾,并且子树内pipip...

2018-06-29 20:44:42

阅读数:34

评论数:0

【CodeForces914G】Sum the Fibonacci

【题目链接】点击打开链接【思路要点】比较基本的子集卷积,子集异或卷积和子集与卷积。时间复杂度\(O(X^2*2^X)\),其中\(X=17\)。【代码】#include<bits/stdc++.h> using namespace std; const ...

2018-06-07 19:55:10

阅读数:58

评论数:0

【CodeForces】CodeForces Round #485 (Div. 1 + Div. 2) 题解

【比赛链接】Div. 1Div. 2【题解链接】点击打开链接【Div.2 A】Infinity Gauntlet【思路要点】按照题意模拟即可。时间复杂度\(O(NLogN)\)。【代码】#include<bits/stdc++.h> using name...

2018-06-05 15:43:52

阅读数:142

评论数:0

【CodeForces487E】【UOJ30】Tourists

【题目链接】CodeForcesUOJ【思路要点】首先我们来证明点双连通分量的一个性质。引理:在一个点双连通分量中,给定任意三个不同的点\(a\),\(b\),\(c\),一定存在一条从\(a\)到\(c\)的,经过每个点至多一次的简单路径经过了\(b\)。证明:考虑网络流。在原图中存在无向边的点...

2018-05-20 11:00:27

阅读数:22

评论数:0

【CodeForces】CodeForces Round #483 (Div. 1 + Div. 2) 题解

【比赛链接】Div. 1Div. 2【题解链接】点击打开链接【Div.2 A】Game【思路要点】排序,取中位数为答案。时间复杂度\(O(NLogN)\)。【代码】#include<bits/stdc++.h> using namespace std; ...

2018-05-17 14:30:35

阅读数:54

评论数:0

【CodeForces】CodeForces Round #477 (Div. 1 + Div. 2) 题解

【比赛链接】Div. 1Div. 2【题解链接】点击打开链接【Div.2 A】Mind the Gap【思路要点】从小到大枚举答案,检查合法性。时间复杂度\(O(Ans*N)\)。【代码】#include<bits/stdc++.h> using nam...

2018-05-07 20:04:26

阅读数:357

评论数:0

【CodeForces】CodeForces Round #476 (Div. 2) 题解

【比赛链接】点击打开链接【题解链接】点击打开链接【A】Paper Airplanes【思路要点】按照题意计算即可。时间复杂度\(O(1)\)。【代码】#include<bits/stdc++.h> using namespace std; const i...

2018-05-01 19:28:18

阅读数:47

评论数:0

【CodeForces452E】Three strings

【题目链接】点击打开链接【思路要点】建立多串后缀树,每个节点对答案数组的贡献可以描述为一次区间加操作,差分+前缀和即可。时间复杂度\(O(\sum|S|)\)。【代码】#include<bits/stdc++.h> using namespace std...

2018-04-29 13:49:50

阅读数:60

评论数:0

【CodeForces】CodeForces Round #475 (Div. 1 + Div. 2) 题解

【比赛链接】Div. 1Div. 2【题解链接】点击打开链接【Div.2 A】Splits【思路要点】由于我们希望得到尽可能不同的权值,我们可以考虑在拆分的开头放置若干个2,然后放1填补剩余的数字。不难发现答案等于\(\lfloor\frac{N}{2}\rfloor+1\)。时间复杂度\(O(1...

2018-04-28 20:39:40

阅读数:99

评论数:0

【CodeForces605C】Freelancer's Dreams

【题目链接】点击打开链接【思路要点】显然有如下线性规划:$$ \left\{\begin{aligned}Minimize\quad \sum_{i=1}^{N}x_i\\Constraints\quad \sum_{i=1}^{N}a_ix_i≥p \\Constraints\quad \sum...

2018-03-31 16:41:49

阅读数:123

评论数:0

【CodeForces666E】Forensic Examination

【题目链接】点击打开链接【思路要点】这个题写得我很爽啊。想法其实不难,建立多串后缀树,然后将询问离线,用线段树合并来回答询问。后缀的前缀是子串,母串的一个子串可以通过从后缀树上某个表示母串对应后缀的节点向上倍增得到。时间复杂度\(O(|S|Log|S|)\)(\(|S|\),\(Q\),\(M\)...

2018-03-31 11:15:35

阅读数:81

评论数:0

【CodeForces906D】Power Tower

【题目链接】点击打开链接【思路要点】欧拉拓展定理:\(a^{\phi(n)}\equiv a^{2\phi(n)}(Mod\ n)\)。而\(\phi(\phi(n))<\frac{n}{2}\)(\(\phi(奇数)=偶数\),\(\phi(偶数)≤\frac{偶数}{2}...

2018-03-23 15:51:03

阅读数:63

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭