cz_xuyixuan的博客

当我跨过沉沦的一切,向永恒开战的时候,你是我的军旗。

排序:
默认
按更新时间
按访问量
RSS订阅

【USACO】2018 December Contest, Platinum题解

**【T1】**Balance Beam 【题目链接】 点击打开链接 【题解链接】 点击打开链接 【思路要点】 考虑一个指数暴力,首先枚举每一个位置选择操作 111 还是操作 222 。 记 EiE_iEi​ 表示从 iii 出发的期望收益。若在 iii 处选择操作 222 ,...

2019-01-20 17:42:23

阅读数:7

评论数:0

【CodeForces】Hello 2019 (Div. 1 + Div. 2) 题解

【比赛链接】 点击打开连接 【题解链接】 点击打开链接 **【A】**Gennady and a Card Game 【思路要点】 按照题意模拟。 时间复杂度 O(1)O(1)O(1) 。 【代码】 #include<bits/stdc++.h&am...

2019-01-09 13:01:13

阅读数:182

评论数:2

【校内训练2019-01-08】Art

【思路要点】 首先,考虑一种朴素的暴力,枚举各树边是否选取,假设选取了 xxx 条边,树将分成 n−xn-xn−x 个部分,令各部分点数为 a1,a2,a3,...,an−xa_1,a_2,a_3,...,a_{n-x}a1​,a2​,a3​,...,an−x​ ,可以用矩阵树定理求解答案。 ...

2019-01-08 13:46:46

阅读数:57

评论数:0

【省内训练2018-12-23】Counting

【思路要点】 问题等价于求不定方程 ∑i=1Naixi=C\sum_{i=1}^{N}a_ix_i=C∑i=1N​ai​xi​=C 的非负整数解的数量。 考虑将 C,xiC,x_iC,xi​ 用二进制表示,我们从高位向低位依次决策 xix_ixi​ 的某一位是否为 111 。 假设当前决策的是...

2018-12-23 17:58:38

阅读数:142

评论数:0

【省内训练2018-12-21】Cards

【思路要点】 考虑最长公共子串的形式,应当由若干条长度为 iii 或 i−1i-1i−1 的链穿插而成,举个例子: 1,4,2,5,3,y,b1,4,2,5,3,y,b1,4,2,5,3,y,b a,x,1,4,2,5,3a,x,1,4,2,5,3a,x,1,4,2,5,3 就由一条长度为 4...

2018-12-22 18:39:31

阅读数:28

评论数:0

【省内训练2018-12-21】Chocolate

【思路要点】 首先,定义 ttt 次成功率为 ppp 的操作恰好成功 xxx 次的概率为 ft,p(x)f_{t,p}(x)ft,p​(x) ,有 ft,p(x)=px(1−p)t−x(tx)f_{t,p}(x)=p^x(1-p)^{t-x}\binom{t}{x}ft,p​(x)=px(1−...

2018-12-22 16:59:54

阅读数:57

评论数:0

【LOJ2955】「NOIP2018」保卫王国

【题目链接】 点击打开链接 【思路要点】 考虑 O(NM)O(NM)O(NM) 的暴力,对于每个询问,我们需要进行一次树形 dpdpdp 。 dpdpdp 的状态大致是令某个点 iii 取/不取,其子树内的最优权值和。 考虑优化,对于一个询问 (x,y)(x,y)(x,y) ,将路径 ...

2018-12-13 11:06:03

阅读数:109

评论数:0

【LOJ2952】「NOIP2018」赛道修建

【题目链接】 点击打开链接 【思路要点】 首先,二分答案 ansansans ,问题转化为判断是否存在 MMM 条长度大于等于 ansansans 的边不相交的路径,考虑树形 dpdpdp 。 记 dpidp_idpi​ 为一个二元组 (x,y)(x,y)(x,y) ,表示在点 iii...

2018-12-13 10:27:54

阅读数:83

评论数:0

【LOJ2951】「NOIP2018」货币系统

【题目链接】 点击打开链接 【思路要点】 首先考虑货币系统中最小的面值 xxx , xxx 一定在最小化的货币系统中出现了,并且一定没有比 xxx 更小的面值在最小化的货币系统中出现。 仅包含 xxx 的当前货币系统能够表示出的面额一定是原有货币系统能表示出的一个子集,考虑在原有货币系...

2018-12-13 10:10:23

阅读数:42

评论数:0

【CodeChef】Adi and the Matrix

【题目链接】 点击打开链接 【思路要点】 考虑用 BurnsideBurnsideBurnside 引理计数。 不妨令 N≤MN≤MN≤M ,枚举 NNN 的整数拆分,在第二维上 dpdpdp 即可。 具体来说,满足将 NNN 拆分为 N=∑aici (ai&...

2018-12-09 11:38:01

阅读数:45

评论数:0

【CodeChef】Suffix Palindromes

【题目链接】 点击打开链接 【思路要点】 考虑计算 dpidp_idpi​ 表示长度为 iii 的,不含长度在 222 到 i−1i-1i−1 之间的回文前缀的回文串的个数,令 dp1=0dp_1=0dp1​=0 。则答案 AnsAnsAns 满足 Ans=SN−∑i=2Ndpi∗SN...

2018-12-09 11:18:54

阅读数:101

评论数:0

【省内训练2018-11-25】Chess

【思路要点】 求出 SSS 到 TTT 的路径长度 mmm 以及路径上的每一个点 pathipath_ipathi​ 。 记路径上 S→TS\rightarrow TS→T 的方向为向前, T→ST\rightarrow ST→S 的方向为向后。 注意到若在 aaa 处的障碍移动到了 bbb ...

2018-11-27 14:29:11

阅读数:98

评论数:1

【省内训练2018-11-23】Bishop

【思路要点】 先考虑一个子问题,在 N∗NN*NN∗N 棋盘的主对角线及其右下方放置 KKK 个不能互相攻击的车,求方案数 f(N,k)f(N,k)f(N,k)。考虑最后一行的放置情况,有递推式 f(N,k)=f(N−1,k)+(N−k+1)∗f(N−1,k−1)f(N,k)=f(N-1,k)...

2018-11-24 17:02:24

阅读数:101

评论数:3

【省内训练2018-11-23】Palindrome

【思路要点】 考虑从两端向中间 dpdpdp 。 对于此类匹配问题,考虑建立 ACACAC 自动机来描述状态。 对 SSS 集合建立 ACACAC 自动机 AAA ,对 SSS 集合中所有串的反串建立 ACACAC 自动机 BBB 。 记 dpi,j,k,0/1dp_{i,j,k,0/1}dp...

2018-11-24 17:00:04

阅读数:99

评论数:0

【CodeForces506E】Mr. Kitayuta's Gift

【题目链接】 点击打开链接 【思路要点】 首先有一个简单的 O(∣S∣3+N∗∣S∣2)O(|S|^3+N*|S|^2)O(∣S∣3+N∗∣S∣2) 的 dpdpdp 做法,即从结果串的两边向中间 dpdpdp 。 这个方法同样可以对于所有 M≤NM≤NM≤N 算出所有答案。 由数据范...

2018-11-22 13:29:08

阅读数:103

评论数:0

【CodeForces553E】Kyoya and Train

【题目链接】 点击打开链接 【思路要点】 考虑一个暴力 dpdpdp ,记 dpi,jdp_{i,j}dpi,j​ 表示在点 iii 处,时刻 jjj 最优决策的期望花费。 则有 dpi,j={x+dist(i,N)j>T0i=N,j≤TMini⇒...

2018-11-19 12:30:06

阅读数:170

评论数:0

【CodeChef】Painting Tree

【题目链接】 点击打开链接 【思路要点】 我们发现直接解决问题难以入手。 回忆期望的定义,有 E=∑i=1VP(x=V)∗V=∑i=1VP(x≥i)E=\sum_{i=1}^{V}P(x=V)*V=\sum_{i=1}^{V}P(x≥i)E=∑i=1V​P(x=V)∗V=∑i=1V​P...

2018-11-04 10:35:30

阅读数:124

评论数:0

【CodeChef】Strange Transform

【题目链接】 点击打开链接 【思路要点】 若我们将每一位分开考虑,异或可以看做模 222 意义下的加法。 因此,一个位置 fk,xf_{k,x}fk,x​ 的值可以看做从 (k,x)(k,x)(k,x) 出发,每次可以选择从 (x,y)(x,y)(x,y) 走到 (x−1,y),(x,...

2018-11-04 10:23:01

阅读数:107

评论数:0

【LOJ2262】「CTSC2017」网络

【题目链接】 点击打开链接 【思路要点】 首先,本题一点重要的观察是,新建的路径的两个端点必定在树的直径上,若一个方案新建路径的两个端点有一个不在直径上,我们令其向直径靠近,不会使答案变劣。 因此,我们可以将直径拿出来考虑,令直径上点数为 tottottot ,每一个点为 posipo...

2018-11-02 21:30:52

阅读数:124

评论数:0

【LOJ2264】「CTSC2017」吉夫特

【题目链接】 点击打开链接 【思路要点】 由 LucasLucasLucas 定理, (ab)%2=(a/2b/2)∗(a%2b%2)%2\binom{a}{b}\%2=\binom{a/2}{b/2}*\binom{a\%2}{b\%2}\%2(ba​)%2=(b/2a/2​)∗(b...

2018-11-02 13:37:27

阅读数:63

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭