【LOJ2954】「NOIP2018」填数游戏

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_39972971/article/details/84983860

【题目链接】

【思路要点】

  • 题目中对矩阵的限制等价于如下两点:
    (1)(1) 、同一条副对角线上的元素单调不增。
    (2)(2) 、若同一条副对角线上相邻的两个位置相等,那么它们右下方的一个矩阵的每一条一条副对角线上的元素均相等。
  • 用搜索实现该算法,并利用上述两个性质剪枝。
  • 注意到搜索的每一个分支都至少有一个答案,因此其时间复杂度为 O(Ans(N,M))O(Ans(N,M))
  • 打表观察发现对于任意 M>N+1M>N+1 ,有 Ans(N,M)=3Ans(N,M1)Ans(N,M)=3*Ans(N,M-1) ,因此我们至多需要计算 Ans(N,N+1)Ans(N,N+1) ,剩余部分可用快速幂解决。
  • 时间复杂度 O(Ans(N,N+1)+LogM)O(Ans(N,N+1)+LogM) ,其中 Ans(8,9)=10879488Ans(8,9)=10879488

【代码】

#include<bits/stdc++.h>
using namespace std;
const int MAXN = 15;
const int P = 1e9 + 7;
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
template <typename T> void chkmax(T &x, T y) {x = max(x, y); }
template <typename T> void chkmin(T &x, T y) {x = min(x, y); } 
template <typename T> void read(T &x) {
	x = 0; int f = 1;
	char c = getchar();
	for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
	for (; isdigit(c); c = getchar()) x = x * 10 + c - '0';
	x *= f;
}
template <typename T> void write(T x) {
	if (x < 0) x = -x, putchar('-');
	if (x > 9) write(x / 10);
	putchar(x % 10 + '0');
}
template <typename T> void writeln(T x) {
	write(x);
	puts("");
}
int n, m, delta, ans, a[MAXN][MAXN];
bool same[MAXN][MAXN];
void work(int x, int y) {
	if (x == n + 1) {
		ans++;
		return;
	}
	int tx = x, ty = y + 1;
	if (ty >= m + 1) ty = 1, tx += 1;
	for (int i = 0; i <= 1; i++) {
		if (i < a[x - 1][y + 1]) continue;
		if (same[x - 1][y] && x - 1 >= 1 && y + 1 <= m && i != a[x - 1][y + 1]) continue;
		a[x][y] = i, same[x][y] = a[x - 1][y] == a[x][y - 1] || same[x - 1][y] || same[x][y - 1];
		work(tx, ty);
	}
}
int power(int x, int y) {
	if (y == 0) return 1;
	int tmp = power(x, y / 2);
	if (y % 2 == 0) return 1ll * tmp * tmp % P;
	else return 1ll * tmp * tmp % P * x % P;
}
int main() {
	freopen("game.in", "r", stdin);
	freopen("game.out", "w", stdout);
	read(n), read(m), delta = max(0, m - (n + 1));
	chkmin(m, n + 1);
	for (int i = 1; i <= n; i++)
		a[i][0] = 8;
	for (int i = 1; i <= m; i++)
		a[0][i] = -8;
	work(1, 1);
	if (n == 1) writeln(1ll * ans * power(2, delta) % P);
	else writeln(1ll * ans * power(3, delta) % P);
	return 0;
}

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试

关闭