K-近邻算法(KNN)概念
如果一个样本在特征空间中的k哥最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
距离
1. 欧氏距离 就是中学学的勾三股四的距离

KNN算法流程总结
- 计算已知类别数据集中的点与当前点之间的距离
- 按照距离递增次序排序
- 选取当前点距离最小的k个点
- 统计前k个点所在的类别出现的屏频率
- 返回前k个点出现频率最高的类别作为当前点的预测分类

API的初步使用
from sklearn.neighbors import KNeighborsClassifier
if __name__ == '__main__':
# 构造数据
x = [[1], [2], [10], [20]]
y = [0, 0, 1, 1, ]
# 训练模型
# 实例化一个估计器对象 n_neighbors 表示从几个邻居来看
estimator = KNeighborsClassifier(n_neighbors=1)
# 调用fit方法进行训练
fit = estimator.fit(x, y)
# 模型训练
rit = estimator.predict([[0]])
print(rit)

kd树。提高knn搜索的效率
什么是kd树
根据knn 每次预测一个点时,我们都需要计算训练集里每个点到这个点的距离,然后选出距离最近的k个点进行投票,当数据集很大时,这个计算的成本较高
kd树: 为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是 如果a和b距离很远,bc距离很近,那么ac距离也很远,有了这个信息就可以在合适的时候跳过距离远的点

1727

被折叠的 条评论
为什么被折叠?



