K-近邻算法

K-近邻算法(KNN)概念

如果一个样本在特征空间中的k哥最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

距离

1. 欧氏距离 就是中学学的勾三股四的距离

在这里插入图片描述

KNN算法流程总结

  1. 计算已知类别数据集中的点与当前点之间的距离
  2. 按照距离递增次序排序
  3. 选取当前点距离最小的k个点
  4. 统计前k个点所在的类别出现的屏频率
  5. 返回前k个点出现频率最高的类别作为当前点的预测分类

在这里插入图片描述

API的初步使用

from sklearn.neighbors import KNeighborsClassifier

if __name__ == '__main__':
    # 构造数据
    x = [[1], [2], [10], [20]]
    y = [0, 0, 1, 1, ]
    # 训练模型
    # 实例化一个估计器对象  n_neighbors 表示从几个邻居来看
    estimator = KNeighborsClassifier(n_neighbors=1)
    # 调用fit方法进行训练
    fit = estimator.fit(x, y)
    # 模型训练
    rit = estimator.predict([[0]])
    print(rit)

在这里插入图片描述

kd树。提高knn搜索的效率

什么是kd树

根据knn 每次预测一个点时,我们都需要计算训练集里每个点到这个点的距离,然后选出距离最近的k个点进行投票,当数据集很大时,这个计算的成本较高
kd树: 为了避免每次都重新计算一遍距离,算法会把距离信息保存在一棵树里,这样在计算之前从树里查询距离信息,尽量避免重新计算。其基本原理是 如果a和b距离很远,bc距离很近,那么ac距离也很远,有了这个信息就可以在合适的时候跳过距离远的点
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值