最近公司有业务需求:要求实现批量分配操作,详情如下:
选择多个客户
选择多个员工
给每个员工分配客户
要求分配的客户数量尽量平均
选择的员工数大于选择的客户数时,一个员工分配一个客户,不够的就不分配
选择的员工数等于客户数时,一个员工对应一个客户
分配的客户最好是随机的。
为了实现上述需求,需要设计一个随机平均分配算法
一开始我的设计思路比较简单,遍历员工集合和客户集合,依次分配单个客户给每个员工,直到分完为止,但是这种实现效率很低,也达不到随机的效果。
转变思路,先分析、设计数据存储结构,入参为两个List<String>集合,返回数据类型为:
一、 Map<String, List<String>>,每个员工作为key,value为分配的客户列表;
二、List<Map<String, List<String>>>,员工作为key,value为分配给他的客户,每个员工-客户列表都对应一个Map<String, List<String>>集合,这样所有的员工-客户列表组合成一个List<Map<String, List<String>>>集合
最终我采用了第二种数据结构,下面是实现代码:
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import com.google.common.collect.Sets;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.lang3.RandomStringUtils;
import org.apache.commons.lang3.RandomUtils;
import org.apache.commons.lang3.StringUtils;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* @author gxl
* @version 1.0
* @description 平均分配算法
* @date 2019-09-11 08:53
*/
public class AverageDataUtil {
/**
* 定义存储待分配数据集合
*/
private static List<String> list = Lists.newArrayList();
/**
* 定义存储分组数据的结构,Map去除泛型,适配多种数据类型格式,使用时需注意
*/
private static List<Map> los = Lists.newArrayList();
/**
* 供外部调用的平均分配方法
*
* @param visitorIds 客户列表
* @param sellerIds 员工列表
* @return List<Map>
*/
public static List<Map> averageData(List<String> visitorIds, List<String> sellerIds) {
initCollections(visitorIds, sellerIds);
if (visitorIds.size() >= sellerIds.size()) {
groupByData(los.size());
return getMaps();
} else {
groupByData(list.size());
return getMaps();
}
}
/**
* 返回数据,清空静态缓存
*
* @return List<Map>
*/
@NotNull
private static List<Map> getMaps() {
List<Map> listMap = Lists.newArrayList();
listMap.addAll(los);
//清空静态数据
los = Lists.newArrayList();
list = Lists.newArrayList();
return listMap;
}
/**
* 分配数据
*
* @param size 分组大小
*/
private static void groupByData(int size) {
List<String> augmented = list;
List<List<String>> lists = chunk2(augmented, size);
for (int i = 0; i < size; i++) {
Map map = los.get(i);
Iterator iterator = map.keySet().iterator();
if (iterator.hasNext()) {
String next = (String) iterator.next();
map.put(next, lists.get(i));
}
}
}
/**
* 初始化集合数据
*
* @param visitorIds 待分配数据
* @param sellerIds 分配目标
*/
private static void initCollections(List<String> visitorIds, List<String> sellerIds) {
//每次调用前清空数据
if (list.size() > 0) {
list = Lists.newArrayList();
}
if (los.size() > 0) {
los = Lists.newArrayList();
}
list.addAll(visitorIds);
List<Map<String, List<String>>> list1 = new ArrayList<>();
for (String sellerId : sellerIds) {
Map<String, List<String>> map = new HashMap<>(16);
List<String> list = new ArrayList<>();
map.put(sellerId, list);
list1.add(map);
}
los.addAll(list1);
}
/**
* 分组数据-核心算法,勿动
*
* @param list 需分配数据
* @param group 分组大小
* @param <T> 分组数据泛型
* @return 分组结果
*/
private static <T> List<List<T>> chunk2(List<T> list, int group) {
if (CollectionUtils.isEmpty(list)) {
return Lists.newArrayList();
}
List<List<T>> result = Lists.newArrayList();
Map<Integer, Set<T>> temp = Maps.newHashMap();
for (int i = 0; i < list.size(); i++) {
if (temp.containsKey(i % group)) {
Set<T> ts = temp.get(i % group);
ts.add(list.get(i));
temp.put(i % group, ts);
} else {
Set<T> ts = Sets.newHashSet();
ts.add(list.get(i));
temp.put(i % group, ts);
}
}
for (Set<T> ts : temp.values()) {
result.add(Lists.newArrayList(ts));
}
return result;
}
public static void main(String[] args) {
List<String> visitorIds = new ArrayList<>();
visitorIds.add("aa");
visitorIds.add("bb");
visitorIds.add("cc");
visitorIds.add("dd");
visitorIds.add("ee");
visitorIds.add("ff");
visitorIds.add("gg");
visitorIds.add("hh");
visitorIds.add("ii");
visitorIds.add("jj");
visitorIds.add("kk");
List<String> sellerIds = new ArrayList<>();
sellerIds.add("11");
sellerIds.add("22");
sellerIds.add("33");
sellerIds.add("44");
sellerIds.add("55");
sellerIds.add("66");
sellerIds.add("77");
sellerIds.add("88");
sellerIds.add("99");
sellerIds.add("1010");
sellerIds.add("1111");
List<Map> maps = averageData(visitorIds, sellerIds);
System.out.println(maps);
}
}
这个代码可能还存在部分问题,可以继续优化改进,有什么建议的话,可以在评论区回复,毕竟我也只是个码农,对算法什么的不是很了解 - -