中医证型关联规则挖掘

1.目的

借助患者病理信息,挖掘患者的症状与中医证型之间的关联关系,对治疗提供依据,挖掘潜在证素

2.挖掘方法与过程

采用关联规则算法,挖掘各中医证素与乳腺癌分期之间的关系
这里写图片描述
步骤:
问卷采集数据,形成原始数据
数据预处理(数据清洗、属性规约、数据交换)
对数据采用关联规则算法,调整参数,训练得到关系模型
结合业务,结果分析,应用实际

3.数据预处理

(1)数据清洗:对数据进行有效性检查,整理成为原始数据
这里写图片描述
(2)属性规约:将数据的73个属性取其重要属性,剔除无关属性,最终的属性为:
6种证型得分、分期的属性值
这里写图片描述
(3)数据变换:
1)属性构造:采用证型系数代替具体单证型的证素得分,
证型系数=该证型得分/该证型总分
这里写图片描述
2)数据离散化:由于Apriori关联规则无法处理连续型数值变量,需要将原始数据离散化,采用聚类算法将各个证型系数离散化处理,将每个属性聚成4类。
这里写图片描述
这里写图片描述
这里写图片描述


from __future__ import print_function
import pandas as pd
from sklearn.cluster import KMeans #导入K均值聚类算法

datafile = 'eeeee/chapter4/demo//data/data.xls' #待聚类的数据文件
processedfile = '../tmp/data_processed.xls' #数据处理后文件
typelabel ={u'肝气郁结证型系数':'A', u'热毒蕴结证型系数':'B', u'冲任失调证型系数':'C', u'气血两虚证型系数':'D', u'脾胃虚弱证型系数':'E', u'肝肾阴虚证型系数':'F'}
k = 4 #需要进行的聚类类别数

#读取数据并进行聚类分析
data = pd.read_excel(datafile) #读取数据
keys = list(typelabel.keys())
result = pd.DataFrame()

if __name__ == '__main__': #判断是否主窗口运行,如果是将代码保存为.py后运行,则需要这句,如果直接复制到命令窗口运行,则不需要这句。
  for i in range(len(keys)):
    #调用k-means算法,进行聚类离散化
    print(u'正在进行“%s”的聚类...' % keys[i])
    kmodel = KMeans(n_clusters = k, n_jobs = 4) #n_jobs是并行数,一般等于CPU数较好
    kmodel.fit(data[[keys[i]]].as_matrix()) #训练模型

    r1 = pd.DataFrame(kmodel.cluster_centers_, columns = [typelabel[keys[i]]]) #聚类中心
    r2 = pd.Series(kmodel.labels_).value_counts() #分类统计
    r2 = pd.DataFrame(r2, columns = [typelabel[keys[i]]+'n']) #转为DataFrame,记录各个类别的数目
    r = pd.concat([r1, r2], axis = 1).sort(typelabel[keys[i]]) #匹配聚类中心和类别数目
    r.index = [1, 2, 3, 4]

    r[typelabel[keys[i]]] = pd.rolling_mean(r[typelabel[keys[i]]], 2) #rolling_mean()用来计算相邻2列的均值,以此作为边界点。
    r[typelabel[keys[i]]][1] = 0.0 #这两句代码将原来的聚类中心改为边界点。
    result = result.append(r.T)

  result = result.sort() #以Index排序,即以A,B,C,D,E,F顺序排
  result.to_excel(processedfile)

4.模型构建
关联规则算法主要用于寻找数据集中项之间的关系,基于样本的统计规律,进行关联规则挖掘
这里写图片描述

  #-*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd

#自定义连接函数,用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
  x = list(map(lambda i:sorted(i.split(ms)), x))
  l = len(x[0])
  r = []
  for i in range(len(x)):
    for j in range(i,len(x)):
      if x[i][:l-1] == x[j][:l-1] and x[i][l-1] != x[j][l-1]:
        r.append(x[i][:l-1]+sorted([x[j][l-1],x[i][l-1]]))
  return r

#寻找关联规则的函数
def find_rule(d, support, confidence, ms = u'--'):
  result = pd.DataFrame(index=['support', 'confidence']) #定义输出结果

  support_series = 1.0*d.sum()/len(d) #支持度序列
  column = list(support_series[support_series > support].index) #初步根据支持度筛选
  k = 0

  while len(column) > 1:
    k = k+1
    print(u'\n正在进行第%s次搜索...' %k)
    column = connect_string(column, ms)
    print(u'数目:%s...' %len(column))
    sf = lambda i: d[i].prod(axis=1, numeric_only = True) #新一批支持度的计算函数

    #创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
    d_2 = pd.DataFrame(list(map(sf,column)), index = [ms.join(i) for i in column]).T

    support_series_2 = 1.0*d_2[[ms.join(i) for i in column]].sum()/len(d) #计算连接后的支持度
    column = list(support_series_2[support_series_2 > support].index) #新一轮支持度筛选
    support_series = support_series.append(support_series_2)
    column2 = []

    for i in column: #遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B?
      i = i.split(ms)
      for j in range(len(i)):
        column2.append(i[:j]+i[j+1:]+i[j:j+1])

    cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) #定义置信度序列

    for i in column2: #计算置信度序列
      cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))]/support_series[ms.join(i[:len(i)-1])]

    for i in cofidence_series[cofidence_series > confidence].index: #置信度筛选
      result[i] = 0.0
      result[i]['confidence'] = cofidence_series[i]
      result[i]['support'] = support_series[ms.join(sorted(i.split(ms)))]

  result = result.T.sort(['confidence','support'], ascending = False) #结果整理,输出
  print(u'\n结果为:')
  print(result)

  return result

import pandas as pd
import time #导入时间库用来计算用时

inputfile = '../data/apriori.txt' #输入事务集文件
data = pd.read_csv(inputfile, header=None, dtype = object)

start = time.clock() #计时开始
print(u'\n转换原始数据至0-1矩阵...')
ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数
b = map(ct, data.as_matrix()) #用map方式执行
data = pd.DataFrame(b).fillna(0) #实现矩阵转换,空值用0填充
end = time.clock() #计时结束
print(u'\n转换完毕,用时:%0.2f秒' %(end-start))
del b #删除中间变量b,节省内存

support = 0.06 #最小支持度
confidence = 0.75 #最小置信度
ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符

start = time.clock() #计时开始
print(u'\n开始搜索关联规则...')
find_rule(data, support, confidence, ms)
end = time.clock() #计时结束
print(u'\n搜索完成,用时:%0.2f秒' %(end-start))

5.模型分析及应用

根据运行结果,我们得出了5个关联规则,然而并非所有的关联规则都有意义,我们只在乎以H为规则结果的规则(即说明在哪些情况下容易产生疾病和疾病所处分期)
A3—-F4—-H4 :支持度为7.85%,置信度为:87.95%
表示在肝气郁结证型系数为第三阶段,肝肾阴虚证型系数为第四阶段,此时分期H4期的可能性为87.95%,而这种情况发生的可能性为7.85%
C3—-F4—-H4 :支持度为7.52%,置信度为:87.5%
B2—-F4—-H4 :支持度为6.23%,置信度为:79.45%

  • 4
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
### 回答1: 中医证型关联规则挖掘是指使用Python编程语言来分析中医临床数据,发现不同证型之间的关联规则。 首先,需要收集一定量的中医临床数据,包括患者的症状、体征、中医诊断和治疗等信息。这些数据可以来自于医院的病历数据库或者是通过调查收集。 然后,使用Python中的数据处理库,例如pandas来对数据进行清洗和预处理。清洗数据是为了去除无效或异常数据,确保数据的准确性和一致性。预处理数据包括数据的归一化、编码等操作,以适应挖掘算法的要求。 接下来,使用Python中的关联规则挖掘算法,例如Apriori算法来分析中医临床数据。关联规则挖掘算法可以根据数据集中项集的频繁程度和相关性,挖掘出各种中医证型之间的关联规则。这些关联规则可以帮助医生更好地理解中医疾病的发展规律和治疗方案。 最后,使用Python进行结果的可视化。可以利用Matplotlib或Seaborn等数据可视化库,将挖掘得到的中医证型关联规则呈现出来,以便医生和研究人员进行进一步分析和研究。 综上所述,中医证型关联规则挖掘是一项结合中医临床数据和Python编程的工作,通过这项工作可以帮助医生更好地理解中医疾病的特点和规律,为中医临床实践提供科学依据。 ### 回答2: 中医证型关联规则挖掘是指利用Python编程语言进行中医证型数据的关联规则挖掘分析。中医证型中医学中根据患者的症状、体征、辨证等信息判断疾病归属类别的一个重要方法。 在Python中,可以通过使用关联规则挖掘的算法,如Apriori算法,来分析中医证型数据中的频繁项集和关联规则。首先,需要将中医证型数据整理成适合算法处理的格式,如使用列表或矩阵表示不同患者的证型数据。然后,利用Python的数据处理库如Pandas、NumPy等对数据进行预处理,以便后续挖掘分析。 接下来,可以使用Apriori算法来发现中医证型数据中的频繁项集。频繁项集是指在数据中经常出现的组合,可以反映不同证型之间的关联关系。Apriori算法通过扫描数据集,逐步生成候选项集,并根据最小支持度阈值筛选出频繁项集。 在得到频繁项集后,可以进一步挖掘关联规则。关联规则是指形如“A -> B”的规则,表示两个证型之间存在某种关联性。关联规则的评价指标有支持度、置信度和提升度等,可以用来判断规则的重要性和可靠性。可以使用Python的关联规则挖掘库(如mlxtend等)来计算和评估关联规则。 最后,通过分析和解释挖掘结果,可以得出不同证型之间的关联关系,为中医诊疗提供参考。此外,可以根据关联规则的挖掘结果,进一步进行研究和实践,探索中医证型的规律和特点,提升中医诊断的准确性和效果。 总之,利用Python进行中医证型关联规则挖掘可以帮助中医学界探索证型之间的关联关系,为中医诊断和治疗提供科学依据。 ### 回答3: 中医证型关联规则挖掘是通过分析中医病案数据,发现不同证型之间的关联性,探索中医疾病证型的规律和特征。其中,Python是一种广泛应用于数据分析和数据挖掘的编程语言。借助Python的相关库和工具,我们可以实现中医证型关联规则挖掘的算法。 首先,我们需要导入相关的Python库,如pandas、numpy和scikit-learn等。然后,我们可以使用pandas库读取并处理中医病案数据,将其转换为适合进行关联规则挖掘的格式。接着,我们可以使用Apriori算法或FP-growth算法等关联规则挖掘算法,通过遍历数据集中的所有项集,找出频繁项集,并根据支持度和置信度等指标生成关联规则。 在中医证型关联规则挖掘过程中,我们可以将证型作为项,构建频繁项集和关联规则的数据模型。通过设定最小支持度和最小置信度阈值,可以筛选出具有一定关联性的中医证型。最后,我们可以使用Python的可视化库,如matplotlib和seaborn等,将关联规则可视化展示出来,以便更好地理解和分析这些关联规则。 总之,中医证型关联规则挖掘是一种运用Python编程实现的数据挖掘方法,可以帮助我们发现中医证型之间的关联性,为中医诊断和治疗提供科学依据。通过使用Python的相关库和工具,我们可以高效地进行中医证型关联规则挖掘,为中医研究和临床实践提供支持。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值