SPFA算法

SPFA算法是求解单源最短路径问题的一种算法,由理查德·贝尔曼(Richard Bellman) 和 莱斯特·福特 创立的。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore 也为这个算法的发展做出了贡献。它的原理是对图进行V-1次松弛操作,得到所有可能的最短路径。其优于迪科斯彻算法的方面是边的权值可以为负数、实现简单,缺点是时间复杂度过高,高达 O(VE)。但算法可以进行若干种优化,提高了效率。

算法的思路: 
我们用数组dis记录每个结点的最短路径估计值,用邻接表或邻接矩阵来存储图G。我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止

我们要知道带有负环的图是没有最短路径的,所以我们在执行算法的时候,要判断图是否带有负环,方法有两种:

  1. 开始算法前,调用拓扑排序进行判断(一般不采用,浪费时间)
  2. 如果某个点进入队列的次数超过N次则存在负环(N为图的顶点数)

SPFA算法手动操作过程

下面我们采用SPFA算法对下图求v1到各个顶点的最短路径,通过手动的方式来模拟SPFA每个步骤的过程

这里写图片描述

  • 初始化:

首先我们先初始化数组dis如下图所示:(除了起点赋值为0外,其他顶点的对应的dis的值都赋予无穷大,这样有利于后续的松弛) 
这里写图片描述

此时,我们还要把v1如队列:{v1}

现在进入循环,直到队列为空才退出循环。

  • 第一次循环:

首先,队首元素出队列,即是v1出队列,然后,对以v1为弧尾的边对应的弧头顶点进行松弛操作,可以发现v1到v3,v5,v6三个顶点的最短路径变短了,更新dis数组的值,得到如下结果: 
这里写图片描述

我们发现v3,v5,v6都被松弛了,而且不在队列中,所以要他们都加入到队列中:{v3,v5,v6}

  • 第二次循环

此时,队首元素为v3,v3出队列,然后,对以v3为弧尾的边对应的弧头顶点进行松弛操作,可以发现v1到v4的边,经过v3松弛变短了,所以更新dis数组,得到如下结果: 
这里写图片描述

此时只有v4对应的值被更新了,而且v4不在队列中,则把它加入到队列中:{v5,v6,v4}

  • 第三次循环

此时,队首元素为v5,v5出队列,然后,对以v5为弧尾的边对应的弧头顶点进行松弛操作,发现v1到v4和v6的最短路径,经过v5的松弛都变短了,更新dis的数组,得到如下结果: 
这里写图片描述

我们发现v4、v6对应的值都被更新了,但是他们都在队列中了,所以不用对队列做任何操作。队列值为:{v6,v4}

  • 第四次循环 
    此时,队首元素为v6,v6出队列,然后,对以v6为弧尾的边对应的弧头顶点进行松弛操作,发现v6出度为0,所以我们不用对dis数组做任何操作,其结果和上图一样,队列同样不用做任何操作,它的值为:{v4}

  • 第五次循环 
    此时,队首元素为v4,v4出队列,然后,对以v4为弧尾的边对应的弧头顶点进行松弛操作,可以发现v1到v6的最短路径,经过v4松弛变短了,所以更新dis数组,得到如下结果: 
    这里写图片描述

因为我修改了v6对应的值,而且v6也不在队列中,所以我们把v6加入队列,{v6}

  • 第六次循环 
    此时,队首元素为v6,v6出队列,然后,对以v6为弧尾的边对应的弧头顶点进行松弛操作,发现v6出度为0,所以我们不用对dis数组做任何操作,其结果和上图一样,队列同样不用做任何操作。所以此时队列为空。

OK,队列循环结果,此时我们也得到了v1到各个顶点的最短路径的值了,它就是dis数组各个顶点对应的值,如下图: 
这里写图片描述

#include<iostream>
#include<string>
#include<queue>
using namespace std;
/*
本算法是使用SPFA来求解图的单源最短路径问题
采用了邻接表作为图的存储结构
可以应用于任何无环的图
*/

//表结构
struct ArcNode {
	int adjvex;      //边的另外一边的顶点下标
	ArcNode * next; //下一条边的表结点
	int weight;
};
struct Vnode {
	string data;           //顶点信息
	ArcNode * firstarc;  //第一条依附在该顶点的边
};

struct Dis {
	string path;  //从顶点到该顶点最短路径
	int  weight;  //最短路径的权重
};

class Graph {
private:
	int vexnum;    //边的个数
	int edge;       //边的条数
	Vnode * node; //邻接表
	Dis  * dis;   //记录最短路径信息的数组
public:
	Graph(int vexnum, int edge);
	~Graph();
	void createGraph(int); //创建图
	bool check_edge_value(int, int, int); //判断边的信息是否合法
	void print();  //打印图的邻接表
	bool SPFA(int begin);   //求解最短路径
	void print_path(int begin); //打印最短路径
};

Graph::Graph(int vexnum, int edge) {
	//对顶点个数和边的条数进行赋值
	this->vexnum = vexnum;
	this->edge = edge;

	//为邻接矩阵开辟空间
	node = new Vnode[this->vexnum];
	dis = new Dis[this->vexnum];
	int i;
	//对邻接表进行初始化
	for (i = 0; i < this->vexnum; ++i) {
		node[i].data = "v" + to_string(i + 1);
		node[i].firstarc = NULL;
	}
}

Graph::~Graph() {
	int i;
	//释放空间,但是记住图中每个结点的链表也要一一释放
	ArcNode * p, *q;
	for (i = 0; i < this->vexnum; ++i) {
		//一定要注意这里,要判断该顶点的出度到底是否为空,不然会出错
		if (this->node[i].firstarc) {
			p = node[i].firstarc;
			while (p) {
				q = p->next;
				delete p;
				p = q;
			}
		}

	}
	delete[] node;
	delete[] dis;
}

// 判断我们每次输入的的边的信息是否合法
//顶点从1开始编号
bool Graph::check_edge_value(int start, int end, int weight) {
	if (start<1 || end<1 || start>vexnum || end>vexnum || weight < 0) {
		return false;
	}
	return true;
}

void Graph::print() {
	cout << "图的邻接表的打印:" << endl;
	int i;
	ArcNode *temp;
	//遍历真个邻接表
	for (i = 0; i < this->vexnum; ++i) {
		cout << node[i].data << " ";
		temp = node[i].firstarc;
		while (temp) {
			cout << "<"
				<< node[i].data
				<< ","
				<< node[temp->adjvex].data
				<< ">="
				<< temp->weight
				<< " ";
			temp = temp->next;
		}
		cout << "^" << endl;
	}
}

void Graph::createGraph(int kind) {
	//kind代表图的种类,2为无向图
	cout << "输入边的起点和终点以及各边的权重(顶点编号从1开始):" << endl;
	int i;
	int start;
	int end;
	int weight;
	for (i = 0; i < this->edge; ++i) {
		cin >> start >> end >> weight;
		//判断输入的边是否合法
		while (!this->check_edge_value(start, end, weight)) {
			cout << "输入边的信息不合法,请重新输入:" << endl;
			cin >> start >> end >> weight;
		}
		ArcNode *temp = new ArcNode;
		temp->adjvex = end - 1;
		temp->weight = weight;
		temp->next = NULL;
		//如果该顶点依附的边为空,则从以第一个开始
		if (node[start - 1].firstarc == NULL) {
			node[start - 1].firstarc = temp;
		}
		else {//否则,则插入到该链表的最后一个位置
			ArcNode * now = node[start - 1].firstarc;
			//找到链表的最后一个结点
			while (now->next) {
				now = now->next;
			}
			now->next = temp;
		}
		//如果是无向图,则反向也要添加新的结点
		if (kind == 2) {
			//新建一个新的表结点
			ArcNode *temp_end = new ArcNode;
			temp_end->adjvex = start - 1;
			temp_end->weight = weight;
			temp_end->next = NULL;
			//如果该顶点依附的边为空,则从以第一个开始
			if (node[end - 1].firstarc == NULL) {
				node[end - 1].firstarc = temp_end;
			}
			else {//否则,则插入到该链表的最后一个位置
				ArcNode * now = node[end - 1].firstarc;
				//找到链表的最后一个结点
				while (now->next) {
					now = now->next;
				}
				now->next = temp_end;
			}
		}

	}
}

bool Graph::SPFA(int begin) {
	bool  *visit;
	//visit用于记录是否在队列中
	visit = new bool[this->vexnum];
	int *input_queue_time;
	//input_queue_time用于记录某个顶点入队列的次数
	//如果某个入队列的次数大于顶点数vexnum,那么说明这个图有环,
	//没有最短路径,可以退出了
	input_queue_time = new int[this->vexnum];
	queue<int> s;  //队列,用于记录最短路径被改变的点

				   /*
				   各种变量的初始化
				   */
	int i;
	for (i = 0; i < this->vexnum; i++) {
		visit[i] = false;
		input_queue_time[i] = 0;
		//路径开始都初始化为直接路径,长度都设置为无穷大
		dis[i].path = this->node[begin - 1].data + "-->" + this->node[i].data;
		dis[i].weight = INT_MAX;
	}
	//首先是起点入队列,我们记住那个起点代表的是顶点编号,从1开始的
	s.push(begin - 1);
	visit[begin - 1] = true;
	++input_queue_time[begin - 1];
	//
	dis[begin - 1].path = this->node[begin - 1].data;
	dis[begin - 1].weight = 0;

	int temp;
	int res;
	ArcNode *temp_node;
	//进入队列的循环
	while (!s.empty()) {
		//取出队首的元素,并且把队首元素出队列
		temp = s.front(); s.pop();
		//必须要保证第一个结点不为空
		if (node[temp].firstarc)
		{
			temp_node = node[temp].firstarc;
			while (temp_node) {
				//如果边<temp,temp_node>的权重加上temp这个点的最短路径
				//小于之前temp_node的最短路径的长度,则更新
				//temp_node的最短路径的信息
				if (dis[temp_node->adjvex].weight > (temp_node->weight + dis[temp].weight)) {
					//更新dis数组的信息
					dis[temp_node->adjvex].weight = temp_node->weight + dis[temp].weight;
					dis[temp_node->adjvex].path = dis[temp].path + "-->" + node[temp_node->adjvex].data;
					//如果还没在队列中,加入队列,修改对应的信息
					if (!visit[temp_node->adjvex]) {
						visit[temp_node->adjvex] = true;
						++input_queue_time[temp_node->adjvex];
						s.push(temp_node->adjvex);
						if (input_queue_time[temp_node->adjvex] > this->vexnum) {
							cout << "图中有环" << endl;
							return false;
						}
					}
				}
				temp_node = temp_node->next;
			}
		}
	}

	//打印最短路径

	return true;
}

void Graph::print_path(int begin) {
	cout << "以顶点" << this->node[begin - 1].data
		<< "为起点,到各个顶点的最短路径的信息:" << endl;
	int i;
	for (i = 0; i < this->vexnum; ++i) {
		if (dis[i].weight == INT_MAX) {
			cout << this->node[begin - 1].data << "---"
				<< this->node[i].data
				<< "  无最短路径,这两个顶点不连通" << endl;
		}
		else
		{
			cout << this->node[begin - 1].data << "---"
				<< this->node[i].data
				<< "  weight: "
				<< dis[i].weight
				<< "  path: "
				<< dis[i].path
				<< endl;
		}

	}
}
//检验输入边数和顶点数的值是否有效,可以自己推算为啥:
//顶点数和边数的关系是:((Vexnum*(Vexnum - 1)) / 2) < edge
bool check(int Vexnum, int edge) {
	if (Vexnum <= 0 || edge <= 0 || ((Vexnum*(Vexnum - 1)) / 2) < edge)
		return false;
	return true;
}
int main() {
	int vexnum; int edge;
	cout << "输入图的种类:1代表有向图,2代表无向图" << endl;
	int kind;
	cin >> kind;
	//判读输入的kind是否合法
	while (1) {
		if (kind == 1 || kind == 2) {
			break;
		}
		else {
			cout << "输入的图的种类编号不合法,请重新输入:1代表有向图,2代表无向图" << endl;
			cin >> kind;
		}
	}

	cout << "输入图的顶点个数和边的条数:" << endl;
	cin >> vexnum >> edge;
	while (!check(vexnum, edge)) {
		cout << "输入的数值不合法,请重新输入" << endl;
		cin >> vexnum >> edge;
	}
	Graph graph(vexnum, edge);
	graph.createGraph(kind);
	graph.print();
	//记得SPFA一个参数,代表起点,这个起点从1开始
	graph.SPFA(1);
	graph.print_path(1);
	system("pause");
	return 0;
}

 

没有更多推荐了,返回首页