HashMap中有个对象 transient Entry[] table;这个是存储数据的地方,但是为什么要加上关键字transient呢?
打个比方说, 向HashMap存一个entry, key为 字符串"STRING", 在第一个java程序里, "STRING"的hashcode()为1, 存入第1号bucket; 在第二个java程序里, "STRING"的hashcode()有可能就是2, 存入第2号bucket. 如果用默认的串行化(Entry[] table不用transient), 那么这个HashMap从第一个java程序里通过串行化导入第二个java程序后, 其内存分布是一样的. 这就不对了. HashMap现在的readObject和writeObject是把内容 输出/输入, 把HashMap重新生成出来. "Object.hashcode()是native方法, 不同的JVM里可能是不一样的." -- 比如你有两个java进程, 那么这两个进程里的同一个字符串的hashcode()可以是不一样的.
HashMap中tableSizeFor的一个精巧的算法
代码如下:
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
tableSizeFor(int cap)是hashMap中的一个Static函数,主要功能是返回一个比给定整数大且最接近的2的幂次方整数,如给定10,返回2的4次方16.
这个算法的原理是什么呢:
我们首先假定cap也就是给定数的的形式为00..01XXXXXXX,(X代表可为0也可为1,X前面的1为从最高位开始第一个为1的那一位)
首先是n |= n >>> 1;也就是n变成n与n右移一位之后异或后的值,即
n: 00..01XXXXXXX
n>>>1:00..001XXXXXX
新n: 00..011XXXXXX
也许到这里你还看不出什么结果,那接着看第二步n |= n >>> 2;也就是n变成n与n右移两位之后异或的值,即
n: 00..011XXXXXX
n>>>2:00..00011XXXX
新n: 00..01111XXXX
到这里就不用再解释了吧,这个算法不断的通过把第一个1开始后面的位变成1,本例由00..01XXXXXXX->00..011111111,最后再返回n+1;
确定哈希桶数据索引位置
//方法一: 2 static final int hash(Object key) { //jdk1.8 & jdk1.7 3 int h; 4 // h = key.hashCode() 为第一步 取hashCode值 5 // h ^ (h >>> 16) 为第二步 高位参与运算 6 return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16); 7 } 8 //方法二: 9 static int indexFor(int h, int length) { //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的 10 return h & (length-1); //第三步 取模运算 11 } HashMap的put方法实现 思路如下: 1.table[]是否为空 2.判断table[i]处是否插入过值 3.判断链表长度是否大于8,如果大于就转换为红黑二叉树,并插入树中 4.判断key是否和原有key相同,如果相同就覆盖原有key的value,并返回原有value 5.如果key不相同,就插入一个key,记录结构变化一次
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, 2 boolean evict) { 3 //判断table是否为空,如果是空的就创建一个table,并获取他的长度 4 Node<K,V>[] tab; Node<K,V> p; int n, i; 5 if ((tab = table) == null || (n = tab.length) == 0) 6 n = (tab = resize()).length; 7 //如果计算出来的索引位置之前没有放过数据,就直接放入 8 if ((p = tab[i = (n - 1) & hash]) == null) 9 tab[i] = newNode(hash, key, value, null); 10 else { 11 //进入这里说明索引位置已经放入过数据了 12 Node<K,V> e; K k; 13 //判断put的数据和之前的数据是否重复 14 if (p.hash == hash && 15 ((k = p.key) == key || (key != null && key.equals(k)))) //key的地址或key的equals()只要有一个相等就认为key重复了,就直接覆盖原来key的value 16 e = p; 17 //判断是否是红黑树,如果是红黑树就直接插入树中 18 else if (p instanceof TreeNode) 19 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); 20 else { 21 //如果不是红黑树,就遍历每个节点,判断链表长度是否大于8,如果大于就转换为红黑树 22 for (int binCount = 0; ; ++binCount) { 23 if ((e = p.next) == null) { 24 p.next = newNode(hash, key, value, null); 25 if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st 26 treeifyBin(tab, hash); 27 break; 28 } 29 //判断索引每个元素的key是否可要插入的key相同,如果相同就直接覆盖 30 if (e.hash == hash && 31 ((k = e.key) == key || (key != null && key.equals(k)))) 32 break; 33 p = e; 34 } 35 } 36 //如果e不是null,说明没有迭代到最后就跳出了循环,说明链表中有相同的key,因此只需要将value覆盖,并将oldValue返回即可 37 if (e != null) { // existing mapping for key 38 V oldValue = e.value; 39 if (!onlyIfAbsent || oldValue == null) 40 e.value = value; 41 afterNodeAccess(e); 42 return oldValue; 43 } 44 } 45 //说明没有key相同,因此要插入一个key-value,并记录内部结构变化次数 46 ++modCount; 47 if (++size > threshold) 48 resize(); 49 afterNodeInsertion(evict); 50 return null; 51 }
HashMap的get方法实现
实现思路:
1.判断表或key是否是null,如果是直接返回null
2.判断索引处第一个key与传入key是否相等,如果相等直接返回
3.如果不相等,判断链表是否是红黑二叉树,如果是,直接从树中取值
4.如果不是树,就遍历链表查找
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
//如果表不是空的,并且要查找索引处有值,就判断位于第一个的key是否是要查找的key
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
//如果是,就直接返回
return first;
//如果不是就判断链表是否是红黑二叉树,如果是,就从树中取值
if ((e = first.next) != null) {
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
//如果不是树,就遍历链表
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
扩容机制
我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果。
元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化:
因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图:
这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置。