图像增强与复原
区别
图像增强:不考虑降质原因。提高可懂度
图像复原:考虑降质原因,提高逼真度
灰度修正
1.灰度变换:
灰度拓展、分段压缩与拓展。。。
还可以对数变换、幂次变换
2.直方图修正:利用灰度直方图
直方图均衡化:使直方图变换后,灰度的概率密度函数为常数
同态增晰
灰度分为几个大区间、这几个区间内灰度细节又需要突出。
将像素分为照明与反射。取In化乘为加。细节未介绍。
平滑
减小噪声。思路:空间内邻域平均,频域内低通滤波。
常用滤波器:
振铃效果:可以理解为频域矩形窗时域Sa函数拖尾震动。

中值滤波
非线性空间滤波处理。克服细节模糊。对高频分量变化多的图像不适用。
与窗口形状选取有关。
锐化
目的:使边缘与细节清晰
一般在降

本文探讨了图像增强与复原的区别,包括灰度修正、同态增晰、平滑、中值滤波、锐化等方法。图像增强关注提高图像可懂度,而图像复原则注重提高图像逼真度。讨论了直方图均衡化、灰度变换、非线性空间滤波等技术,并提到了图像复原中的几何校正和维纳滤波应用。
最低0.47元/天 解锁文章
868

被折叠的 条评论
为什么被折叠?



