pytorch 数据预处理模块transforms

57 篇文章 ¥39.90 ¥99.00
本文介绍了PyTorch中的transforms模块,它是torchvision库中的关键部分,主要用于图像预处理,包括标准化、中心化、旋转和翻转等操作。此外,还提到了torchvision中的其他两个模块:datasets用于提供常见的数据集,models则包含预训练的深度学习模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

transforms是pytorch中常用的图像预处理方法,这个在torchvision计算机视觉工具包中.

在torchvision中,有三个主要的模块:

● torchvision.transforms:常用的图像预处理方法,比如:标准化、中心化、旋转、翻转等;
● torchvision.datasets:常用的数据集的dataset实现,例如:MNIST、CIFAR-10、ImageNet等;
● torchvision.models:常用的预训练模型,AlexNet、VGG、ResNet等。
 

参考文献:

pytorch数据增强_Mick..的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一壶浊酒..

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值