transforms是pytorch中常用的图像预处理方法,这个在torchvision计算机视觉工具包中.
在torchvision中,有三个主要的模块:
● torchvision.transforms:常用的图像预处理方法,比如:标准化、中心化、旋转、翻转等;
● torchvision.datasets:常用的数据集的dataset实现,例如:MNIST、CIFAR-10、ImageNet等;
● torchvision.models:常用的预训练模型,AlexNet、VGG、ResNet等。
本文介绍了PyTorch中的transforms模块,它是torchvision库中的关键部分,主要用于图像预处理,包括标准化、中心化、旋转和翻转等操作。此外,还提到了torchvision中的其他两个模块:datasets用于提供常见的数据集,models则包含预训练的深度学习模型。
7万+

被折叠的 条评论
为什么被折叠?



