模型评估指标AUC

AUC(Area Under Curve)是评估分类模型性能的重要指标,通常用于二分类问题。它通过ROC曲线下的面积来衡量模型区分正负样本的能力,AUC值范围在0.5到1之间,值越接近1表示模型性能越好。混淆矩阵是理解AUC的基础,涉及真正例率(TPR)和伪阳性率(FPR)。ROC曲线由不同的阈值对应的不同(FPR, TPR)点连接而成,AUC值即ROC曲线下的面积。在广告推荐领域,传统AUC可能不适用,这时会采用GAUC(Group AUC)来评估用户对不同广告的排序能力。" 110652181,8567619,Seata实战:Spring Cloud Alibaba分布式事务解决方案,"['分布式事务', 'Seata', 'springcloud', '数据库']
摘要由CSDN通过智能技术生成

模型评估指标AUC 、

AUC(Area Under Curve)被定义为ROC曲线下与坐标轴围成的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围在0.5和1之间。AUC越接近1.0,检测方法真实性越高;等于0.5时,则真实性最低,无应用价值。

AUC在机器学习领域中是一种模型评估指标。根据维基百科的定义,AUC(area under the curve)是ROC曲线下的面积。所以,在理解AUC之前,要先了解ROC是什么。而ROC的计算又需要借助混淆矩阵,因此,我们先从混淆矩阵开始谈起。

混淆矩阵

假设,我们有一个任务:给定一些患者的样本,构建一个模型来预测肿瘤是不是恶性的。在这里,肿瘤要么良性,要么恶性,所以这是一个典型的二分类问题。

假设我们用y=1表示肿瘤是良性,y=0表示肿瘤是恶性。则我们可以制作如下图的表格:

TP表示预测为良性,而实际也是良性的样例数;
FN表示预测为恶性,而实际是良性的样例数;
FP表示预测为良性,而实际是恶性的样例数;
TN表示预测为恶性,而实际也是恶性的样例数;

所以,上面这四个数就形成了一个矩阵,称为混淆矩阵。

两个变量

在这里插入图片描述
FPR表示,在所有的恶性肿瘤中,被预测成良性的比例。称为伪阳性率。伪阳性率告诉我们,随机拿一个恶性的肿瘤样本,有多大概率会将其预测成良性肿瘤。显然我们会希望FPR越小越好。
在这里插入图片描述
TPR表示,在所有良性肿瘤中,被预测为良性的比例。称为真阳性率。真阳性率告诉我们,随机拿一个良性的肿瘤样本时,有多大的概率会将其预测为良性肿瘤。显然我们会希望TPR越大越好。
如果以FPR为横坐标,TPR为纵坐标,就可以得到下面的坐标系:
在这里插入图片描述
纵坐标:TPR (预测为正,实际为正 占 所有实际为正 比例)
横坐标:FPR (预测为正,实际为负 占 所有实际为负 比例)

可能看到这里,你会觉得有点奇怪,用FPR和TPR分别作横纵坐标有什么用呢?我们先来考察几个特殊的点。

  • 点(0,1),即FPR=0,TPR=1。FPR=0说明FP=0,也就是说,没有假正例。TPR=1说明,FN=0,也就是说没有假反例。这不就是最完美的情况吗?所有的预测都正确了。良性的肿瘤都预测为良性,恶性
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>