程序小翰
码龄7年
关注
提问 私信
  • 博客:24,371
    社区:2,163
    26,534
    总访问量
  • 16
    原创
  • 1,864,165
    排名
  • 1
    粉丝
  • 0
    铁粉

个人简介:不断成长的编程中的编程小白

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2017-09-06
博客简介:

qq_40133804的博客

查看详细资料
个人成就
  • 获得21次点赞
  • 内容获得9次评论
  • 获得65次收藏
创作历程
  • 2篇
    2022年
  • 3篇
    2021年
  • 13篇
    2020年
成就勋章
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

C++中vector、stack、unordered_map使用笔记

文章目录一、vector(向量)1.vector定义2.vector函数二、stack(栈)1.定义2.函数三、unordered_map(无序map,常用于哈希表)1.定义2.函数一、vector(向量)1.vector定义#include<vector>;vector<类型> a; //定义一个空vectorvector<类型> a(10);//定义10个向量,没有初始化vector<类型> a(10,val);//定义10个向量,初始化为v
原创
发布博客 2022.03.26 ·
842 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Windows环境下labelme安装

详情见官网:https://github.com/wkentaro/labelme步骤一:安装anaconda详细过程见百度步骤二:conda create --name=labelme python=3.6 创建环境activate labelme 激活环境(和官网不一样,试了官网方法会报错)pip install labelme -i https://pypi.douban.com/simple 加镜像,速度飞起...
原创
发布博客 2022.01.12 ·
371 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

torch.nn.function中pad的原理和用法

torch.nn.functional.pad(input, pad, mode='constant', value=0.0)本文主要解释参数pad的含义,之前看了网上的很多博客,感觉都是转载一篇的,只是形象的讲述了tensor在3维以内时pad的工作原理,本人之前在看完后还是很疑惑。在看了官方文档后,恍然大悟,于是想总结下pad的普遍性使用方法。下面展示一些 torch文档中的实例:参数pad需要输入一个元组,元组中元素个数小于等于input维度的2倍。如:input是2维的,则pad可以最多有
原创
发布博客 2021.10.22 ·
6819 阅读 ·
18 点赞 ·
2 评论 ·
23 收藏

详解python装饰器

转载别人的优秀文章链接: https://www.cnblogs.com/cicaday/p/python-decorator.html.
转载
发布博客 2021.05.30 ·
113 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Multi-head Self-attention

Multi-head Self-attention一个Attention获得一个表示空间,如果多个Attention,则可以获得多个不同的表示空间。以2个head为例,a所得到的q,k,v可以进一步乘以两个变换矩阵W成为q1,q2,k1,k2,v1,v2.图中的例子只有两个输入ai与aj,qi1与ki1做attention,qi1与kji做attention,分别乘以各自的v1后得到bi1。同理,qi2与ki2做attention,qi2与kj2做attention,可以得到bi2.bi1与bi
原创
发布博客 2021.05.08 ·
1172 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

对各种数据集的处理

一、数据集获取:UCF-101http://crcv.ucf.edu/data/UCF101/UCF101.rar运行 rar x UCF101.rarHMDB51https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/第一次:rar x hmdb51_org.rar 得到51个压缩包第二次*.rar | xargs -n1 rar x 解压3.something-somethinght
原创
发布博客 2020.11.12 ·
718 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

《Multimodal Keyless Attention Fusionfor Video Classification》阅读笔记

一篇基于Attention思想的动作识别论文作者的主要贡献点主要有二1、提出了一种简单注意力机制,将其辅助用于RNN模型中。2、基于注意力机制创新了视频中多模态信息的融合方法。Keyless Attention文章的核心内容。作者简化了注意力机制,构建了一个简单的注意力结构。注意力机制的输入为{a1,a2,…,an}。输出为其中ai的权重为:综上可以简单的表示为 c = KeylessAtt({ai}).Model网络的结构体系基于双向LSTM,其中 (x1,x2,…,xT)可以表示
原创
发布博客 2020.06.26 ·
808 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

《TSM:Temporal Shift Module for Efficient Video Understanding》阅读笔记

这篇论文的核心思想是通过在2DCNN中位移temporal维度上的channels,来实现视频中时间维度上的信息交互。作者分析了一般的卷积操作,其主要分为两个部分,1是位移,2是对应位置的权值相乘再相加。其中位移不消耗计算资源,所以,作者想到能否可以在temporal维度上位移,达到不同帧的特征信息交融来增强模型对视频信息的理解。位移过程如下图所示:上图中,不同颜色代表不同帧的特征,其大小为chw*。图b中,在T方向上,将第一列向下位移1位,第二列向上位移1位,空出的部分补0填充。**这样的位移方法也
原创
发布博客 2020.05.24 ·
547 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

《MARS: Motion-Augmented RGB Stream for Action Recognition》阅读笔记

文章链接为了解决计算光流的带来的庞大的时间开销问题,这篇论文的主旨是介绍了两种学习方法来训练一个标准的3D CNN,在RGB帧上操作,模拟运动流,从而避免在测试时进行光流计算。可以看到下图作者给出图标,无论是MARS+RBG还是MERS+RBG,准确率和RGB+TVL1Flow差不多,但时耗小很多。下面来介绍下MERS和MARSMERSMERS是我们最后需要得到的model。所以在此...
原创
发布博客 2020.04.26 ·
1742 阅读 ·
1 点赞 ·
1 评论 ·
6 收藏

《Ensemble Learning Methods for Deep Learning Neural Networks》笔记

文章连接:Ensemble Learning Methods for Deep Learning Neural Networks前言神经网络提供了更大的灵活性,并可根据可用的培训数据量进行调整。但这种灵活性的一个缺点是,他们通过随机训练算法学习,这意味着他们对训练数据的细节很敏感,每次训练时可能会找到不同的一组权重,从而产生不同的预测。这样的情况被称为具有高方差的神经网络,降低神经网络模型方...
原创
发布博客 2020.04.18 ·
719 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

《Video Action Transformer Network》阅读笔记(附Transformer的笔记内容)

Transformer半年前刚开始踏入深度学习的时候,看李弘毅的视频了解了一点Transformer。这次的笔记也是基于李宏毅视频讲解的内容。在处理seq2seq问题时,我们首先能想到的就时rnn,它的优势是能结合上下文把握全局,不足是,它的计算不能实现平行。如下图,要想得到b4,必须先计算出b1,b2,b3。但如果用cnn替换rnn那就可以实现并行了,只不过这样的cnn需要构建多层,如图右边...
原创
发布博客 2020.04.11 ·
3242 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pytorch loss function 总结(别人的文章,自己收藏)

别人的总结博客
转载
发布博客 2020.04.09 ·
242 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

《ECO: Efficient Convolutional Network for Online Video Understanding》阅读笔记

《ECO: Efficient Convolutional Network for Online Video Understanding》前言这是一篇2018年提交在ECCV的论文,在文章的 Introduction部分,作者描述了自己对构建行为识别模型的一些看法:1、作者认为一个动作良好的初始分类是可以从单帧中获取的。所以单帧的领域信息对于网络都是冗余的。2、要想连接远距离帧的上下文关系,不能只...
原创
发布博客 2020.03.15 ·
323 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

论文笔记:ARTNet、Non-local Neural Networks

《Appearance-and-Relation Networks for Video Classification》链接: https://arxiv.org/abs/1711.09125.这篇文章中,作者认为在分类视频工作时最主要要抓住两点,1是每一帧的静态外观,2、是跨多帧之间的时序关系。帧的静态外观很好提取,处理视频最重要的难点就在于如何表示多帧之间的时序关系。主流的做法有两种,1...
原创
发布博客 2020.03.01 ·
501 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Optical Flow Guided Feature 笔记

论文:《Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition》这篇论文主要贡献点有两个:1、提出了一种鲁棒性强速度快的运动信息表示特征OFF。2、提出了将OFF运用于端到端训练的网络结构。OFF简单的说,OFF即是光流向量的正交向量。由基本的光流约束方...
原创
发布博客 2020.02.19 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

I3D与T3D读后笔记

I3D论文:《Quo Vadis ,Action Recognition? A New Model and the Kinetics Dataset》这篇论文的主要内容分为3个部分:1、介绍了Kinetics数据集。2、提出了一种用imageNet数据集预训练3D卷积模型的方法,避免了3D卷积模型从0开始训练。3、构建了3D卷积的双流结构。在UCF-101上测试出准确率高达98%的好效果...
原创
发布博客 2020.02.13 ·
2324 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

基于金字塔分层的LK光流学习笔记

光流法之前对光流的认识只是保留在是一种视频动作信息的一种表示,最近有幸看到一篇大神整理的博客,写的特别详细,对光流法有了进一步的理解。大神博客地址:https://blog.csdn.net/sgfmby1994/article/details/68489944灰度图的图像信息是有其图像亮度表现的,在视频中,帧的图像亮度信息会发生变化,光流即是图像亮度的运动信息描述。光流计算基于两个假设:...
原创
发布博客 2020.02.06 ·
1819 阅读 ·
0 点赞 ·
1 评论 ·
12 收藏

视频中行为识别 DT算法学习后感

视频中行为识别 DT算法学习后感密集轨迹算法密集采样轨迹描述运动和结构描述符特征编码和svm分类一名在视频中行为识别方向刚入门初学者。半年以来,看完了李宏毅深度学习的视频,学习了点tensorflow和opencv,之后看了十多篇关于视频中行为识别的经典论文。在学习的过程中,做了很多笔记,但苦于太过凌乱,也不好日后总结,所以计划开始学习写博客,记录自己的学习过程,希望自己能够加油坚持。密集轨...
原创
发布博客 2020.02.03 ·
683 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏
加载更多