肖朋伟

Stay hungry,stay foolish!

排序:
默认
按更新时间
按访问量
RSS订阅

TensorFlow笔记-08-过拟合,正则化,matplotlib 区分红蓝点

TensorFlow笔记-08-过拟合,正则化,matplotlib可视化工具模块 首先提醒一下,第7讲的最后滑动平均的代码已经更新了,代码要比理论重要 今天是过拟合,和正则化,本篇后面可能或更有兴趣,因为涉及到可视化图形了,而不是纯数据 过拟合:神经网络模型在训练集上的准确率比较高在新的数据进...

2018-10-31 18:48:02

阅读数 1215

评论数 0

TensorFlow笔记-07-神经网络优化-学习率,滑动平均

TensorFlow 笔记-06-神经网络优化-交叉熵,学习率 交叉熵 交叉熵(Cross Entropy):表示两个概率分布之间的距离,交叉熵越大,两个概率分布距离越远,两个概率分布越相异;交叉熵越小,两个概率分布距离越近,两个概率分布越相似 交叉熵计算公式:H(y_, y) = -Σy_ ...

2018-08-28 21:48:07

阅读数 11431

评论数 0

TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数,交叉熵

TensorFlow笔记-06-神经网络优化-损失函数,自定义损失函数 神经元模型:用数学公式比表示为:f(Σi xi*wi + b), f为激活函数 神经网络 是以神经元为基本单位构成的 激活函数:引入非线性激活因素,提高模型的表达能力 常用的激活函数有relu、sigmoid、tanh等...

2018-08-24 14:57:39

阅读数 11749

评论数 0

TensorFlow笔记-05-反向传播,搭建神经网络的八股

TensorFlow笔记-05-神经网络的实现过程(代码),反向传播 先回顾神经网络的实现过程 神经网络的实现过程 1.准备数据,提取特征,作为输入喂给神经网络 2.搭建NN结构,从输入到输出(先搭建计算图,再用会话执行) (NN前向传播算法===&am...

2018-08-23 21:38:18

阅读数 10096

评论数 0

TensorFlow笔记-04-神经网络的实现过程,前向传播

TensorFlow笔记-03-神经网络的实现过程 基于TensorFlow的NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型 张量(tensor):多维数组(列表) 阶:张量的维数 计算图(Graph):搭建神经网络的计算过程,只搭建,不运算 ...

2018-08-20 20:08:54

阅读数 10668

评论数 0

TensorFlow笔记-03-张量,计算图,会话

TensorFlow笔记-02-张量,计算图,会话 搭建你的第一个神经网络,总结搭建八股 基于TensorFlow的NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型 张量(tensor):多维数组(列表) 阶:张量的维数 ···维数···...

2018-08-20 18:22:09

阅读数 8134

评论数 0

TensorFlow笔记-02-使用PyCharm搭建TensorFlow环境(win版非虚拟机)

Windows下TensorFlow环境的搭建(非虚拟机) 本篇介绍的是在windows系统下,使用Anaconda+PyCharm,不使用虚拟机安装Linux 安装Anaconda 这个相信有很多人都在用,所以简单说一下 如果没有安装可以直接去Anaconda官网下载:https://w...

2018-08-20 12:14:47

阅读数 10723

评论数 0

TensorFlow笔记-01-开篇概述

人工智能实践:TensorFlow笔记-01-概述 什么是人工智能? 人工智能:机器模拟人的意识和思维 艾伦·麦席森·图灵(1912/06–1954/06),美国数学家,逻辑学家,“计算机科学之父”,“人工智能之父” 人工智能助理 谷歌 Assistant,微软 Cortana,苹果Sir...

2018-08-19 11:37:41

阅读数 10105

评论数 2

TensorFlow笔记-00-开篇

人工智能实践:TensorFlow笔记 从今天开始,从零开始学习TensorFlow,有相同兴趣的同志,可以互相学习笔记 TensorFlow笔记-章节介绍 人工智能概述 1.概述 2.windows系统下的安装 python高级语法 1.函数、模块、包 2.类、对象、面向对象的编程 ...

2018-08-19 09:50:06

阅读数 8005

评论数 0

提示
确定要删除当前文章?
取消 删除