1.并查集是什么
定义:并查集是一种用来管理元素分组情况的数据结构。并查集可以高效的进行以下操作。不过注意并查集虽然可以进行合并操作,但是却无法进行分割操作;
一.用来查询元素a和元素b是否属于同一组。
二.合并元素a和元素b所在的组。
比如有三组数据: 1,2,5 3 4,6,7
利用并查集可以知道1和2是同一组,但2和4不是同一组
也可以用并查集将1,2组合并为 1,2,3,5
并查集的结构
并查集也是使用树形结构实现的。不过,不是二叉树。
每个元素对应一个节点,每个组对应一棵树。在并查集中,哪个节点是哪个节点的父亲以及树的形状等信心不用管;
(1)初始化
我们先准备N个节点有来表示N个元素。最开始时没有边。
并且自己是指向自己的
int par[MAX_N];//父亲
int rank[MAX_N];//树的高度
//初始化n个元素
void init(int n){
for(int i=0;i<n;i++)
par[i]=i,rank[i]=0;
}
(2)合并
树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。
//查询树的根(递归写法)
int find(int x){
if(parp[x]==x)
return x;
else
return par[x]=find(par[x]);
}
//查询树的根(循环写法)
int find(intx){
int p=x,t;
while(par[p]!=p) p=par[p];
while(x!=p) {t=par[x];par[x]=p;x=t;}
return x;
}
递归和循环效率目前没有太大的差距;
最后是合并操作 unite,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,如图所示。
//合并x,y所属的集合
void unite(int x,int y){
x=find(x);
y=find(y);
if(x==y) return ;
if(rank[x]<rank[y]){
par[x]=y;
else
par[y]=x;
if(rank[x]==rank[y])
rank++;
}
}
//判断x和y是否属于同一集合
bool same(int x,int y){
return find(x)==fand(y);
}