并查集(Union-find Sets)

1.并查集是什么
定义:并查集是一种用来管理元素分组情况的数据结构。并查集可以高效的进行以下操作。不过注意并查集虽然可以进行合并操作,但是却无法进行分割操作;
一.用来查询元素a和元素b是否属于同一组。
二.合并元素a和元素b所在的组。

比如有三组数据: 1,2,5 3 4,6,7
利用并查集可以知道1和2是同一组,但2和4不是同一组
也可以用并查集将1,2组合并为 1,2,3,5

并查集的结构
并查集也是使用树形结构实现的。不过,不是二叉树。
每个元素对应一个节点,每个组对应一棵树。在并查集中,哪个节点是哪个节点的父亲以及树的形状等信心不用管;

(1)初始化
我们先准备N个节点有来表示N个元素。最开始时没有边。
这里写图片描述
并且自己是指向自己的

int par[MAX_N];//父亲
int rank[MAX_N];//树的高度
//初始化n个元素
void init(int n){
    for(int i=0;i<n;i++)
        par[i]=i,rank[i]=0;
}

(2)合并
树的节点表示集合中的元素,指针表示指向父节点的指针,根节点的指针指向自己,表示其没有父节点。沿着每个节点的父节点不断向上查找,最终就可以找到该树的根节点,即该集合的代表元素。

//查询树的根(递归写法)
int find(int x){
    if(parp[x]==x)
        return x;
    else
        return par[x]=find(par[x]);
}
//查询树的根(循环写法)
int find(intx){
    int p=x,t;
    while(par[p]!=p) p=par[p];
    while(x!=p) {t=par[x];par[x]=p;x=t;}
    return x;
}

递归和循环效率目前没有太大的差距;
最后是合并操作 unite,并查集的合并也非常简单,就是将一个集合的树根指向另一个集合的树根,如图所示。

//合并x,y所属的集合
void unite(int x,int y){
    x=find(x);
    y=find(y);
    if(x==y) return ;
    if(rank[x]<rank[y]){
        par[x]=y;
    else
        par[y]=x;
    if(rank[x]==rank[y])
        rank++;
    }
}   
//判断x和y是否属于同一集合
bool same(int x,int y){
    return find(x)==fand(y);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值