卷积神经网络的一些细节:‘VALID’与’SAME’

本文探讨卷积神经网络中'VALID'和'SAME'填充模式的细节。在'SAME'填充下,计算公式保证卷积后尺寸为原尺寸,填充量由卷积核大小和步长决定。特别地,当填充量为奇数时,填充会偏向于下右侧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近在做卷积神经网络的相关项目中,有一些细节需要经常查阅,而有时却不一定找得到,索性将这些细节记录下来,方便自己查看,也方便大家参考。

基本知识

以TensorFlow为模板,卷积神经网络常用的填充模式有’VALID’和’SAME’两种,其中’VALID’为不填充模式,即对于原始的尺寸不进行填充,直接进行卷积。所以卷积计算的尺寸公式为原本的 ⌈ d − k + 1 s ⌉ \lceil \frac{d-k+1}{s} \rceil sdk+1,也可以写作 ⌊ d − k + s s ⌋ \lfloor \frac{d-k+s}{s} \rfloor sdk+s
而’SAME’则是一种特殊的填充,保证了卷积后大小为 ⌈ d s ⌉ \lceil \frac{d}{s} \rceil

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值