最近在做卷积神经网络的相关项目中,有一些细节需要经常查阅,而有时却不一定找得到,索性将这些细节记录下来,方便自己查看,也方便大家参考。
基本知识
以TensorFlow为模板,卷积神经网络常用的填充模式有’VALID’和’SAME’两种,其中’VALID’为不填充模式,即对于原始的尺寸不进行填充,直接进行卷积。所以卷积计算的尺寸公式为原本的 ⌈ d − k + 1 s ⌉ \lceil \frac{d-k+1}{s} \rceil ⌈sd−k+1⌉,也可以写作 ⌊ d − k + s s ⌋ \lfloor \frac{d-k+s}{s} \rfloor ⌊sd−k+s⌋。
而’SAME’则是一种特殊的填充,保证了卷积后大小为 ⌈ d s ⌉ \lceil \frac{d}{s} \rceil

本文探讨卷积神经网络中'VALID'和'SAME'填充模式的细节。在'SAME'填充下,计算公式保证卷积后尺寸为原尺寸,填充量由卷积核大小和步长决定。特别地,当填充量为奇数时,填充会偏向于下右侧。
最低0.47元/天 解锁文章
309

被折叠的 条评论
为什么被折叠?



