线性代数笔记:Frobenius 范数

Frobenius范数是矩阵的度量,等同于矩阵元素绝对值平方和的开方,而L2范数通常用于向量,是向量元素平方和的开方。这篇博客介绍了Frobenius范数的定义,强调了它与L2范数的区别,并提供了numpy库中计算Frobenius范数的实现示例。
摘要由CSDN通过智能技术生成

1 介绍

Frobenius 范数,简称F-范数,是一种矩阵范数,记为||·||F。

矩阵A的Frobenius范数定义为矩阵A各项元素的绝对值平方的总和开根,即

一个比较重要的结论 tr(A^TA)=||A||_F 

相当于L2范数开根号

numpy 实现 Frobenius 范数:

numpy笔记 linalg_UQI-LIUWJ的博客-CSDN博客

2 混淆概念区别  Frobenius 范数-L2范数

L 2 范数是对向量来说的(有些地方L2范数直接写成||x||)

 

或者说Lp范数都是针对向量来说的

Frobenius 范数 是针对矩阵来说的

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值