1 公式
如果曲线C的参数方程是
,
在[α,β]上连续,f(x,y)在C上连续,那么第一型曲线积分
可以转化成定积分
特殊情况:曲线C的方程式y=g(x),那么第一型曲线积分
可以转化成定积分
1.1 空间曲线C的第一型曲线积分
如果空间曲线C的参数方程为,
在
上连续,f(x,y,z)在C上连续,那么有:
第一型曲线积分举例:计算一条质量分布不均匀的绳子的质量
2 性质
(1) 函数f(x,y),g(x,y)在C上连续, a,b是常数
(2) 曲线C由曲线C1和C2组成,f(x,y)在C上连续
3 举例
,C是单位元在第一象限的部分

这篇博客介绍了第一型曲线积分的概念,当曲线C的参数方程给定时,如何将第一型曲线积分转化为定积分。内容涵盖了空间曲线积分的公式,并给出了质量分布不均匀绳子质量计算的实例。此外,还讨论了积分的性质和曲线组合的情况。关键词涉及连续性、定积分和曲线积分的转换。
1271

被折叠的 条评论
为什么被折叠?



