- 交通预测是智能交通系统的重要组成部分,并且有助于下游任务的完成。
- 一些下游任务对预测结果的粒度十分敏感,例如交通信号控制、拥堵发现和路线规划。
- 以交通信号控制为例,分钟级别的预测能够及时评估即将到来的交通信号的影响,从而优化交通政策,因为交通信号变化的间隔大约为1分钟。
- 此前的深度学习方法主要关注粗粒度的交通数据(如PEMS一般都是15min打底的)。
- 然而,尚未有研究探索如何利用深度学习方法来解决细粒度设定下的交通预测任务。
- 在细粒度设定下,交通流量由交通信号决定。
- 当信号灯变绿时,车辆能够流向下游道路。
- 因此,在交通预测背景下,这些道路之间的相关性很强,如图1(a)所示。
- 然而,先前的研究忽略了细粒度设定下节点之间显著的动态相关性,转而使用静态图或数据驱动的图来汇聚节点的知识。

- 由于交通信号导致的高度动态相关性,空间邻近的道路并不具有相似的交通流量。
- 因此,如图1(b)所示,细粒度的交通数据是非平滑的,我们在本文中定义了一种新的评估指标,称为时空平均距离(STMAD)。
- 先前的方法在粗粒度的平滑数据集上表现良好。然而,由于平滑性是GCN设计的本质[4],实验表明,现有方法在非平滑的细粒度数据上依然做出了平滑的预测,从而导致了较大的误差。

- 为了更好地建模动态相关性并解决细粒度数据的非平滑性问题,论文提出了一种名为细粒度深度交通推理(FDTI)的模型。
- 这是首次完成城市级别的细粒度交通预测
- 首先,为了适应细粒度交通推理中交通信号控制交通流的特性,论文构建了一个细粒度交通时空图(FTSTG)。
- 具体而言,构建了一个富含路网特征的多层交通图,每一层代表一个时间框架,如图1(c)所示。
- 图中的边表示相邻时间框架中的两个节点之间由交通信号控制的交通流链接。

- 然后,我们提出了一种动态移动卷积网络(Dynamic Mobility Convolution Network),用于在FTSTG上诱导与交通政策一致的结果。
- 人们可以将交通网络比喻为水流网络,其中交通信号类似于控制流量的水龙头。
- 基于前两个模块,我们进一步在流量守恒的前提下推断每个节点的交通流量。
zhyliu00/FDTI: Code for ECMLPKDD'23 "FDTI: Fine-grained Deep Traffic Inference with Roadnet-enriched Graph" (github.com)
- 数据集
- 在三个大规模城市级数据集(南昌、曼哈顿、杭州)和一个小规模数据集(杭州-小)上评估
- 当前的城市交通数据稀疏、粗粒度且缺乏交通信号信息
- ——>利用真实的道路网数据和车辆轨迹数据作为输入
- 从广泛使用的KDD CUP2021交通模拟器中收集了1小时的细粒度数据
- 这三个城市的道路网数据来自OpenStreetMap3
- 曼哈顿的车辆轨迹是的真实数据,杭州和南昌的车辆轨迹则来自交通警察报告的真实信息