2023 KDD
1 背景
- 精心设计的交通控制策略,例如交通信号控制和拥堵收费,能够提高城市交通的效率
- 这些策略依赖于与交通环境交互生成的数据,以在不同后果下做出合理决策。
- 然而,现实中的城市交通无法提供足够的交互数据来训练这些策略,因为策略的探索可能对城市交通产生负面影响,例如引发严重拥堵
- 因此,交通模拟器作为替代方案应运而生,为交通控制策略提供了交互的交通环境
- 这些模拟器模拟了城市交通的微观演变。
- 在每个时间步中,它们描述交通状态,获取交通控制策略的决策并在模拟中执行该决策
- 交通控制策略可以从特定行动下交通的演变中学习,并改进决策
- 虽然现有的交通模拟器成功孵化了多种交通控制策略,但它们仍存在缺陷。
- 目前的模拟器由于设计较为初级,只支持规模小于一百个路口的道路网络模拟,无法扩展到包含数千个路口的城市级交通
- 由于效率和机制的限制,这些模拟器要么无法在可行的时间内完成城市级模拟,要么阻止大量车辆进入交通网络。
- 另一个问题在于大规模交通模拟的输入数据短缺。
- 尽管全球主要城市的地图数据现已基本完成并逐步完善,但缺乏便捷访问地图数据的基础设施以及将其转化为模拟输入的流程。
- 因此,交通模拟的输入通常来自手动工作,并且仅限于少量的道路网络,这些网络的规模通常只有几十个路口(例如4x3或4x4),远远小于真实的城市道路网络。
- 目前的模拟器由于设计较为初级,只支持规模小于一百个路口的道路网络模拟,无法扩展到包含数千个路口的城市级交通
2 论文思路
- 提出了City Brain Lab(CBLab),这是一种支持可扩展交通模拟的新型工具包
- CBLab由三个组件组成:微观交通模拟器CBEngine、数据工具CBData和交通控制策略环境CBScenario。
- CBEngine具有高效的并行化设计,能够在普通计算硬件上运行规模为10,000个路口和100,000辆车辆的交通模拟,模拟时间与真实时间的比例为1:4。
- CBData提供了一个可访问的数据集,包含了全球100个主要城市的原始道路网络。
- CBData还准备了一条自动将原始数据转化为交通模拟输入数据的流程。
- 通过结合CBEngine和CBData,用户可以轻松在真实的城市级道路网络上启动交通模拟。
- CBScenario,作为交通信号控制和拥堵收费这两种常见交通控制策略的环境
- 用户可以在CBScenario框架中设计、开发和训练交通控制策略
- CBLab由三个组件组成:微观交通模拟器CBEngine、数据工具CBData和交通控制策略环境CBScenario。

CBEngine — CBLab 1.0.0 documentation (cblab-documentation.readthedocs.io)


被折叠的 条评论
为什么被折叠?



