论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab

ICLR 2024

  • 判断生成的文本是人写的还是大模型写的
  • 现有的检测器主要分为两类
    • 有监督分类器
      • 在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差
    • 零样本分类器
      • 免疫领域特定的退化
      • 在检测精度上可以与有监督分类器相当
      • 但目前的方法计算成本高、计算时间长
  • ——>提出了一种新的假设来检测机器生成的文本
    • 人类和机器在给定上下文的情况下选择词汇存在明显的差异
      • 人类的选择比较多样,而机器更倾向于选择具有更高模型概率的词汇
      • 如下图,在四个不同开源模型上,人类撰写文本的条件概率曲率近似一个均值为 0 的正态分布,而机器生成文本的条件概率曲率近似一个均值为 3 的正态分布
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>