论文略读:The Power of Noise: Redefining Retrieval for RAG Systems

省流:在RAG中,噪声文档不仅没有对系统性能造成负面影响,反而能够显著提高系统的准确性

1 检索文档类型分类

  • 相关文档

    • 包含直接与查询相关的信息,提供直接回答或解释查询的标准数据。

  • 相关但不包含答案文档

    • 虽然没有直接回答查询,但在语义上或背景上与主题相关联。

    • 例如,如果有人问拿破仑的马的颜色,一份表述拿破仑妻子马的颜色的文档,虽然不包含正确信息,但与之高度相关。

  • 不相关文档

    • 与查询无关,代表了检索过程中的一种信息噪音。

2 论文实验与结论

2.1 相关但不包含答案文档的影响

  • “Far”,"Mid","Near"分别代表将ground-truth文档放置在不同的位置
  • 第一行“0”代表没有添加相关但不包含答案的文档,往后依次增加相关文档数量。
  • “-”代表输入超出LLM所支持的输入长度。

——>与查询语义上相关但不包含正确答案的文档对系统性能有负面影响

——>当ground-truth靠近查询语句时,模型的准确度最高。相反,当ground-truth位于上下文中间或远离查询语句时,模型的准确度降低。

2.2 噪声影响

在存在噪声的情况下,性能并没有下降,反而在某些情况下出现了显著提升

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值